Metatungstate Chemical Vapor Deposition of WSe2: Substrate Effects, Shapes, and Morphologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precursor Deposition and CVD Synthesis Procedure
2.2. Experimental Techniques
3. Characterization and Analysis
3.1. Metatungstate Method for WSe2 Deposition on Si/SiO2
3.2. Metatungstate Method for WSe2 Deposition on Fused Silica
3.3. Metatungstate Method for WSe2 Deposition on Sapphire
4. General Remarks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohl, M.; Rautio, A.-R.; Asres, G.A.; Wasala, M.; Patil, P.D.; Talapatra, S.; Kordas, K. 2D Tungsten Chalcogenides: Synthesis, Properties and Applications. Adv. Mater. Interfaces 2020, 7, 2000002. [Google Scholar] [CrossRef]
- Eftekhari, A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications. J. Mater. Chem. A 2017, 5, 18299–18325. [Google Scholar] [CrossRef]
- Cheng, Q.; Pang, J.J.; Sun, D.; Wang, J.J.; Zhang, S.; Liu, F.; Chen, Y.; Yang, R.; Liang, N.; Lu, X.; et al. WSe2 2D p-type semiconductor-based electronic devices for information technology: Design, preparation, and applications. InfoMat 2020, 2, 656–697. [Google Scholar] [CrossRef]
- Yao, Z.; Liu, J.; Xu, K.; Chow, E.K.C.C.; Zhu, W. Material Synthesis and Device Aspects of Monolayer Tungsten Diselenide. Sci. Rep. 2018, 8, 5221. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Lin, J.; Huang, X.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H.; Lei, J.; et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Shen, J.; Long, G.; Wu, Z.; Bao, Z.Q.; Liu, C.C.; Xiao, X.; Han, T.; Lin, J.; Wu, Y.; et al. Odd-Integer Quantum Hall States and Giant Spin Susceptibility in p-type Few-Layer WSe2. Phys. Rev. Lett. 2017, 118, 067702. [Google Scholar] [CrossRef]
- Wang, J.; Xie, F.; Cao, X.H.; An, S.C.; Zhou, W.X.; Tang, L.M.; Chen, K.Q. Excellent Thermoelectric Properties in monolayer WSe2 Nanoribbons due to Ultralow Phonon Thermal Conductivity. Sci. Rep. 2017, 7, 41418. [Google Scholar] [CrossRef]
- Desai, S.B.; Seol, G.; Kang, J.S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J.W.; Guo, J.; Javey, A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14, 4592–4597. [Google Scholar] [CrossRef]
- Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797. [Google Scholar] [CrossRef]
- Courtade, E.; Semina, M.; Manca, M.; Glazov, M.M.; Robert, C.; Cadiz, F.; Wang, G.; Taniguchi, T.; Watanabe, K.; Pierre, M.; et al. Charged excitons in monolayer WSe2: Experiment and theory. Phys. Rev. B Condens. Matter Mater. Phys. 2017, 96, 085302. [Google Scholar] [CrossRef]
- Robert, C. When bright and dark bind together. Nat. Nanotechnol. 2018, 13, 982–983. [Google Scholar] [CrossRef]
- Sierra, J.F.; Fabian, J.; Kawakami, R.K.; Roche, S.; Valenzuela, S.O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 2021, 16, 856–868. [Google Scholar] [CrossRef]
- Zhao, S.; Li, X.; Dong, B.; Wang, H.; Wang, H.; Zhang, Y.; Han, Z.; Zhang, H. Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: Status and challenges. Rep. Prog. Phys. 2021, 84, 026401. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, B.; Zou, X.; Cheng, H.M. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem. Rev. 2018, 118, 6091–6133. [Google Scholar] [CrossRef]
- Tang, L.; Tan, J.; Nong, H.; Liu, B.; Cheng, H.-M. Chemical Vapor Deposition Growth of Two-Dimensional Compound Materials: Controllability, Material Quality, and Growth Mechanism. Acc. Mater. Res. 2020, 2, 36–47. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, M.; Wang, L.; Chen, Y.; Xing, Z.; Zhang, T.; Liu, Z.; Zuo, J.; Nan, F.; Mendes, R.G.; et al. Ultrafast Self-Limited Growth of Strictly Monolayer WSe2 Crystals. Small 2016, 12, 5741–5749. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, J.; Ding, F. Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis. Chem. Rev. 2021, 121, 6321–6372. [Google Scholar] [CrossRef] [PubMed]
- Hoang, A.T.; Qu, K.; Chen, X.; Ahn, J.H. Large-area synthesis of transition metal dichalcogenides via CVD and solution-based approaches and their device applications. Nanoscale 2021, 13, 615–633. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Ji, E.; Capasso, A.; Lee, G.-H.H. Recent Progresses in the Growth of Two-dimensional Transition Metal Dichalcogenides. J. Korean Ceram. Soc. 2019, 56, 24–36. [Google Scholar] [CrossRef]
- Brent, J.R.; Savjani, N.; O’Brien, P. Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog. Mater. Sci. 2017, 89, 411–478. [Google Scholar] [CrossRef]
- Han, J.H.; Kwak, M.; Kim, Y.; Cheon, J. Recent Advances in the Solution-Based Preparation of Two-Dimensional Layered Transition Metal Chalcogenide Nanostructures. Chem. Rev. 2018, 118, 6151–6188. [Google Scholar] [CrossRef]
- Xie, C.; Yang, P.; Huan, Y.; Cui, F.; Zhang, Y. Roles of salts in the chemical vapor deposition synthesis of two-dimensional transition metal chalcogenides. Dalt. Trans. 2020, 49, 10319–10327. [Google Scholar] [CrossRef]
- Wong, S.L.; Liu, H.; Chi, D. Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides. Prog. Cryst. Growth Charact. Mater. 2016, 62, 9–28. [Google Scholar] [CrossRef]
- You, J.; Hossain, M.D.; Luo, Z. Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology. Nano Converg. 2018, 5, 26. [Google Scholar] [CrossRef]
- Li, S. Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides. iScience 2021, 24, 103229. [Google Scholar] [CrossRef]
- Bosi, M. Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: A review. RSC Adv. 2015, 5, 75500–75518. [Google Scholar] [CrossRef]
- Lan, S.; Zhang, Z.; Hong, Y.; She, Y.; Pan, B.; Xu, Y.; Wang, P. Judicious Selection of Precursors with Suitable Chemical Valence State for Controlled Growth of Transition Metal Chalcogenides. Adv. Mater. Interfaces 2023, 10, 2300713. [Google Scholar] [CrossRef]
- Alahmadi, M.; Mahvash, F.; Szkopek, T.; Siaj, M. A two-step chemical vapor deposition process for the growth of continuous vertical heterostructure WSe2/h-BN and its optical properties. RSC Adv. 2021, 11, 16962–16969. [Google Scholar] [CrossRef]
- Zhang, X.; Choudhury, T.H.; Chubarov, M.; Xiang, Y.; Jariwala, B.; Zhang, F.; Alem, N.; Wang, G.C.; Robinson, J.A.; Redwing, J.M. Diffusion-Controlled Epitaxy of Large Area Coalesced WSe2 Monolayers on Sapphire. Nano Lett. 2018, 18, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Han, A.; Aljarb, A.; Liu, S.; Li, P.; Ma, C.; Xue, F.; Lopatin, S.; Yang, C.W.; Huang, J.K.; Wan, Y.; et al. Growth of 2H stacked WSe2 bilayers on sapphire. Nanoscale Horiz. 2019, 4, 1434–1442. [Google Scholar] [CrossRef]
- Chen, L.; Liu, B.; Ge, M.; Ma, Y.; Abbas, A.N.; Zhou, C. Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode. ACS Nano 2015, 9, 8368–8375. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ahn, G.H.; Cho, J.; Amani, M.; Mastandrea, J.P.; Groschner, C.K.; Lien, D.H.; Zhao, Y.; Ager, J.W.; Scott, M.C.; et al. Synthetic WSe2 monolayers with high photoluminescence quantum yield. Sci. Adv. 2019, 5, eaau4728. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, H.R.; Mehmood, N.; Çakiroǧlu, O.; Serkan Kasirga, T. Real time optical observation and control of atomically thin transition metal dichalcogenide synthesis. Nanoscale 2019, 11, 7317–7323. [Google Scholar] [CrossRef] [PubMed]
- Naylor, C.H.; Parkin, W.M.; Gao, Z.; Kang, H.; Noyan, M.; Wexler, R.B.; Tan, L.Z.; Kim, Y.; Kehayias, C.E.; Streller, F.; et al. Large-area synthesis of high-quality monolayer 1T’-WTe2 flakes. 2D Mater. 2017, 4, 021008. [Google Scholar] [CrossRef] [PubMed]
- Mandyam, S.V.; Zhao, M.Q.; Masih Das, P.; Zhang, Q.; Price, C.C.; Gao, Z.; Shenoy, V.B.; Drndić, M.; Johnson, A.T.C. Controlled Growth of Large-Area Bilayer Tungsten Diselenides with Lateral P-N Junctions. ACS Nano 2019, 13, 10490–10498. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Joon Yun, S.; Jong Yu, W.; Hee Lee, Y.; Fan, S.; Yun, S.J.; Lee, Y.H.; Yu, W.J. Tailoring Quantum Tunneling in a Vanadium-Doped WSe2/SnSe2 Heterostructure. Adv. Sci. 2020, 7, 1902751. [Google Scholar] [CrossRef]
- Joon Yun, S.; Loc Duong, D.; Manh Ha, D.; Singh, K.; Luan Phan, T.; Choi, W.; Kim, Y.-M.; Hee Lee, Y.; Yun, S.J.; Duong, D.L.; et al. Ferromagnetic Order at Room Temperature in Monolayer WSe2 Semiconductor via Vanadium Dopant. Adv. Sci. 2020, 7, 1903076. [Google Scholar] [CrossRef]
- Duong, D.L.; Yun, S.J.; Kim, Y.; Kim, S.G.; Lee, Y.H. Long-range ferromagnetic ordering in vanadium-doped WSe2 semiconductor. Appl. Phys. Lett. 2019, 115, 242406. [Google Scholar] [CrossRef]
- Zhang, F.; Zheng, B.; Sebastian, A.; Olson, D.H.; Liu, M.; Fujisawa, K.; Pham, Y.T.H.; Jimenez, V.O.; Kalappattil, V.; Miao, L.; et al. Monolayer Vanadium-Doped Tungsten Disulfide: A Room-Temperature Dilute Magnetic Semiconductor. Adv. Sci. 2020, 7, 2001174. [Google Scholar] [CrossRef] [PubMed]
- Ortiz Jimenez, V.; Pham, Y.T.H.; Liu, M.; Zhang, F.; Yu, Z.; Kalappattil, V.; Muchharla, B.; Eggers, T.; Duong, D.L.; Terrones, M.; et al. Light-Controlled Room Temperature Ferromagnetism in Vanadium-Doped Tungsten Disulfide Semiconducting Monolayers. Adv. Electron. Mater. 2021, 7, 2100030. [Google Scholar] [CrossRef]
- Han, G.H.; Kybert, N.J.; Naylor, C.H.; Lee, B.S.; Ping, J.; Park, J.H.; Kang, J.; Lee, S.Y.; Lee, Y.H.; Agarwal, R.; et al. Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 2015, 6, 6128. [Google Scholar] [CrossRef]
- Naylor, C.H.; Parkin, W.M.; Ping, J.; Gao, Z.; Zhou, Y.R.; Kim, Y.; Streller, F.; Carpick, R.W.; Rappe, A.M.; Drndić, M.; et al. Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 2016, 16, 4297–4304. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Yu, W.; Liu, C.; Cheng, X.; Qiao, R.; Liang, J.; Zhou, X.; Wang, J.; Wu, M.; Zhao, Y.; et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat. Nanotechnol. 2020, 15, 987–991. [Google Scholar] [CrossRef]
- Guan, H.; Zhao, B.; Zhao, W.; Ni, Z. Liquid-precursor-intermediated synthesis of atomically thin transition metal dichalcogenides. Mater. Horiz. 2023, 10, 1105–1120. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, D.; Tong, X.; Liu, S.; Wang, J.; Zhao, Y.; Liu, R.; Zhao, X.; Zhang, N.; Cao, F.; Liu, Y.; et al. Superior Nonlinear Optical Response in Non-Centrosymmetric Stacking Edge-Rich Spiral MoTe2 Nanopyramids. Adv. Funct. Mater. 2022, 32, 2113052. [Google Scholar] [CrossRef]
- Lee, E.; Kim, J.; Yun, S.J.; Kim, Y. Near-field visualization of charge transfer at MoSe2/WSe2 lateral heterojunction. Opt. Mater. Express 2019, 9, 1864–1871. [Google Scholar] [CrossRef]
- Zhang, T.; Fujisawa, K.; Zhang, F.; Liu, M.; Lucking, M.C.; Gontijo, R.N.; Lei, Y.; Liu, H.; Crust, K.; Granzier-Nakajima, T.; et al. Universal In Situ Substitutional Doping of Transition Metal Dichalcogenides by Liquid-Phase Precursor-Assisted Synthesis. ACS Nano 2020, 14, 4326–4335. [Google Scholar] [CrossRef]
- Wan, X.; Miao, X.; Yao, J.; Wang, S.; Shao, F.; Xiao, S.; Zhan, R.; Chen, K.; Zeng, X.; Gu, X.; et al. In Situ Ultrafast and Patterned Growth of Transition Metal Dichalcogenides from Inkjet-Printed Aqueous Precursors. Adv. Mater. 2021, 33, 2100260. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, X.; Chen, R.; Sun, J.; Kang, H.; Ji, D.; Liu, Y.; Wei, D. Self-Expanding Molten Salt-Driven Growth of Patterned Transition-Metal Dichalcogenide Crystals. J. Am. Chem. Soc. 2022, 144, 8746–8755. [Google Scholar] [CrossRef]
- Patil, B.; Bernini, C.; Marré, D.; Pellegrino, L.; Pallecchi, I. Ink-jet printing and drop-casting deposition of 2H-phase SnSe2 and WSe2 nanoflake assemblies for thermoelectric applications. Nanotechnology 2021, 33, 035302. [Google Scholar] [CrossRef]
- Abbas, O.A.; Zeimpekis, I.; Wang, H.; Lewis, A.H.; Sessions, N.P.; Ebert, M.; Aspiotis, N.; Huang, C.C.; Hewak, D.; Mailis, S.; et al. Solution-Based Synthesis of Few-Layer WS2 Large Area Continuous Films for Electronic Applications. Sci. Rep. 2020, 10, 1696. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.; Lee, Y.H.; Lin, Y.; Fang, W.; Yu, L.; Dresselhaus, M.S.; Kong, J. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 2014, 14, 464–472. [Google Scholar] [CrossRef]
- Yun, S.J.; Han, G.H.; Kim, H.; Duong, D.L.; Shin, B.G.; Zhao, J.; Vu, Q.A.; Lee, J.; Lee, S.M.; Lee, Y.H. Telluriding monolayer MoS2 and WS2 via alkali metal scooter. Nat. Commun. 2017, 8, 2163. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Han, G.H.; Yun, S.J.; Zhao, J.; Keum, D.H.; Jeong, H.Y.; Ly, T.H.; Jin, Y.; Park, J.H.; Moon, B.H.; et al. Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology 2017, 28, 36LT01. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Liu, K.; Yang, S.; Wang, F.; Su, J.; Jin, B.; Li, H.; Zhai, T. Salt-assisted chemical vapor deposition of two-dimensional materials. Sci. China Chem. 2019, 62, 1300–1311. [Google Scholar] [CrossRef]
- Huang, L.; Hu, Z.; Jin, H.; Wu, J.; Liu, K.; Xu, Z.; Wan, J.; Zhou, H.; Duan, J.; Hu, B.; et al. Salt-Assisted Synthesis of 2D Materials. Adv. Funct. Mater. 2020, 30, 1908486. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Tang, D.M.; Zhao, W.; Xu, H.; Chu, L.; Bando, Y.; Golberg, D.; Eda, G. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 2015, 1, 60–66. [Google Scholar] [CrossRef]
- Bai, X.; Li, S.; Das, S.; Du, L.; Dai, Y.; Yao, L.; Raju, R.; Du, M.; Lipsanen, H.; Sun, Z. Single-step chemical vapour deposition of anti-pyramid MoS2/WS2 vertical heterostructures. Nanoscale 2021, 13, 4537–4542. [Google Scholar] [CrossRef]
- Hunyadi, D.; Sajó, I.; Szilágyi, I.M. Structure and thermal decomposition of ammonium metatungstate. J. Therm. Anal. Calorim. 2013, 116, 329–337. [Google Scholar] [CrossRef]
- Griffin, A.; Nisi, K.; Pepper, J.; Harvey, A.; Szydłowska, B.M.; Coleman, J.N.; Backes, C. Effect of Surfactant Choice and Concentration on the Dimensions and Yield of Liquid-Phase-Exfoliated Nanosheets. Chem. Mater. 2020, 32, 2852–2862. [Google Scholar] [CrossRef]
- Ko, H.; Kim, H.S.; Ramzan, M.S.; Byeon, S.; Choi, S.H.; Kim, K.K.; Kim, Y.H.; Kim, S.M. Atomistic mechanisms of seeding promoter-controlled growth of molybdenum disulphide. 2D Mater. 2019, 7, 015013. [Google Scholar] [CrossRef]
- Wang, P.; Lei, J.; Qu, J.; Cao, S.; Jiang, H.; He, M.; Shi, H.; Sun, X.; Gao, B.; Liu, W. Mechanism of Alkali Metal Compound-Promoted Growth of Monolayer MoS2: Eutectic Intermediates. Chem. Mater. 2019, 31, 873–880. [Google Scholar] [CrossRef]
- Kim, M.; Son, M.; Seo, D.B.; Kim, J.; Jang, M.; Kim, D.I.; Lee, S.; Yim, S.; Song, W.; Myung, S.; et al. Dual Catalytic and Self-Assembled Growth of Two-Dimensional Transition Metal Dichalcogenides Through Simultaneous Predeposition Process. Small 2023, 19, 2206350. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lin, Y.C.; Liu, X.Y.; Hu, Z.; Wu, J.; Nakajima, H.; Liu, S.; Okazaki, T.; Chen, W.; Minari, T.; et al. Wafer-scale and deterministic patterned growth of monolayer MoS2 via vapor–liquid–solid method. Nanoscale 2019, 11, 16122–16129. [Google Scholar] [CrossRef]
- Li, S.; Lin, Y.C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z.; Shen, Y.; Tang, D.M.; Wang, J.; Zhang, Q.; et al. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 2018, 17, 535–542. [Google Scholar] [CrossRef]
- Cheng, Z.; He, S.; Han, X.; Wang, M.; Zhang, S.; Liu, S.; Liang, G.; Zhang, S.; Xia, M. Interfaces determine the nucleation and growth of large NbS2 single crystals. CrystEngComm 2021, 23, 1312–1320. [Google Scholar] [CrossRef]
- Qiang, X.; Iwamoto, Y.; Watanabe, A.; Kameyama, T.; He, X.; Kaneko, T.; Shibuta, Y.; Kato, T. Non-classical nucleation in vapor–liquid–solid growth of monolayer WS2 revealed by in-situ monitoring chemical vapor deposition. Sci. Rep. 2021, 11, 22285. [Google Scholar] [CrossRef]
- Li, C.; Kameyama, T.; Takahashi, T.; Kaneko, T.; Kato, T. Nucleation dynamics of single crystal WS2 from droplet precursors uncovered by in-situ monitoring. Sci. Rep. 2019, 9, 12958. [Google Scholar] [CrossRef]
- Chen, J.; Liu, B.; Liu, Y.; Tang, W.; Nai, C.T.; Li, L.; Zheng, J.; Gao, L.; Zheng, Y.; Shin, H.S.; et al. Chemical Vapor Deposition of Large-Sized Hexagonal WSe2 Crystals on Dielectric Substrates. Adv. Mater. 2015, 27, 6722–6727. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Q. A simple method for understanding the triangular growth patterns of transition metal dichalcogenide sheets. AIP Adv. 2015, 5, 107105. [Google Scholar] [CrossRef]
- Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J.H. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 2014, 26, 6371–6379. [Google Scholar] [CrossRef]
- Momeni, K.; Ji, Y.; Zhang, K.; Robinson, J.A.; Chen, L.Q. Multiscale framework for simulation-guided growth of 2D materials. npj 2D Mater. Appl. 2018, 2, 27. [Google Scholar] [CrossRef]
- Lv, R.; Terrones, H.; Elías, A.L.; Perea-López, N.; Gutiérrez, H.R.; Cruz-Silva, E.; Rajukumar, L.P.; Dresselhaus, M.S.; Terrones, M. Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more. Nano Today 2015, 10, 559–592. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Feng, H.; Wang, L.; Chen, S.; Zhou, Z.; Wang, S.; Liu, Q. Shape-dependent close-edge 2D-MoS2 nanobelts. RSC Adv. 2020, 10, 33544–33548. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Luo, S.; Boyle, L.; Zeng, H.; Huang, S. Controlled fractal growth of transition metal dichalcogenides. Nanoscale 2019, 11, 17065–17072. [Google Scholar] [CrossRef] [PubMed]
- Samaniego-Benitez, J.E.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Garcia-Garcia, A.; Arellano-Jimenez, M.J.; Perez-Robles, J.F.; Plascencia-Villa, G.; Velázquez-Salazar, J.J.; Ortega, E.; Favela-Camacho, S.E.; et al. Synthesis and structural characterization of MoS2 micropyramids. J. Mater. Sci. 2020, 55, 12203–12213. [Google Scholar] [CrossRef]
- Ly, T.H.; Zhao, J.; Kim, H.; Han, G.H.; Nam, H.; Lee, Y.H. Vertically Conductive MoS2 Spiral Pyramid. Adv. Mater. 2016, 28, 7723–7728. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Su, S.; Cheng, P.; Hu, X.; Gao, X.; Zhang, Z.; Liu, J.M. Vertically conductive MoS2 pyramids with a high density of active edge sites for efficient hydrogen evolution. J. Mater. Chem. C 2020, 8, 3017–3022. [Google Scholar] [CrossRef]
- Negri, M.; Francaviglia, L.; Kaplan, D.; Swaminathan, V.; Salviati, G.; Fontcuberta, I.; Morral, A.; Fabbri, F. Excitonic absorption and defect-related emission in three-dimensional MoS2 pyramids. Nanoscale 2022, 14, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Komen, I.; van Heijst, S.E.; Conesa-Boj, S.; Kuipers, L. Morphology-induced spectral modification of self-assembled WS2 pyramids. Nanoscale Adv. 2021, 3, 6427–6437. [Google Scholar] [CrossRef]
- Sarma, P.V.; Kayal, A.; Sharma, C.H.; Thalakulam, M.; Mitra, J.; Shaijumon, M.M. Electrocatalysis on Edge-Rich Spiral WS2 for Hydrogen Evolution. ACS Nano 2019, 13, 10448–10455. [Google Scholar] [CrossRef]
- Lin, X.; Liu, Y.; Wang, K.; Wei, C.; Zhang, W.; Yan, Y.; Li, Y.J.; Yao, J.; Zhao, Y.S. Two-Dimensional Pyramid-like WS2 Layered Structures for Highly Efficient Edge Second-Harmonic Generation. ACS Nano 2018, 12, 689–696. [Google Scholar] [CrossRef]
- Chen, L.; Liu, B.; Abbas, A.N.; Ma, Y.; Fang, X.; Liu, Y.; Zhou, C. Screw-Dislocation-Driven growth of Two-Dimensional few-layer and pyramid-like WSe2 by sulfur-assisted Chemical Vapor Deposition. ACS Nano 2014, 8, 11543–11551. [Google Scholar] [CrossRef]
- Lin, X.; Liu, Y.; Wang, K.; Liu, X.; Yan, Y.; Li, Y.J.; Yao, J.; Zhao, Y.S. Hybrid three-dimensional spiral WSe2 plasmonic structures for highly efficient second-order nonlinear parametric processes. Research 2018, 2018, 4164029. [Google Scholar] [CrossRef]
- Shi, W.; Lin, M.L.; Tan, Q.H.; Qiao, X.F.; Zhang, J.; Tan, P.H. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Mater. 2016, 3, 025016. [Google Scholar] [CrossRef]
- Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D.R.T.; et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916. [Google Scholar] [CrossRef] [PubMed]
- Tangi, M.; Mishra, P.; Tseng, C.C.; Ng, T.K.; Hedhili, M.N.; Anjum, D.H.; Alias, M.S.; Wei, N.; Li, L.J.; Ooi, B.S. Band Alignment at GaN/Single-Layer WSe2 Interface. ACS Appl. Mater. Interfaces 2017, 9, 9110–9117. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ghorannevis, Z.; Amara, K.K.; Pang, J.R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P.H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.; Zhang, X.; Li, Z.Y.; Li, J. Kirigami/origami: Unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding”. Light Sci. Appl. 2020, 9, 75. [Google Scholar] [CrossRef]
- Shinde, S.M.; Dhakal, K.P.; Chen, X.; Yun, W.S.; Lee, J.; Kim, H.; Ahn, J.H. Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2. NPG Asia Mater. 2018, 10, e468. [Google Scholar] [CrossRef]
- Cai, L.; Shearer, M.J.; Zhao, Y.; Hu, Z.; Wang, F.; Zhang, Y.; Eliceiri, K.W.; Hamers, R.J.; Yan, W.; Wei, S.; et al. Chemically Derived Kirigami of WSe2. J. Am. Chem. Soc. 2018, 140, 10980–10987. [Google Scholar] [CrossRef] [PubMed]
- Kastl, C.; Chen, C.T.; Kuykendall, T.; Shevitski, B.; Darlington, T.P.; Borys, N.J.; Krayev, A.; Schuck, P.J.; Aloni, S.; Schwartzberg, A.M. The important role of water in growth of monolayer transition metal dichalcogenides. 2D Mater. 2017, 4, 021024. [Google Scholar] [CrossRef]
- Terrones, H.; Del Corro, E.; Feng, S.; Poumirol, J.M.; Rhodes, D.; Smirnov, D.; Pradhan, N.R.; Lin, Z.; Nguyen, M.A.T.; Elías, A.L.; et al. New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides. Sci. Rep. 2014, 4, 4215. [Google Scholar] [CrossRef] [PubMed]
- Degregorio, Z.P.; Myers, J.C.; Campbell, S.A. Rational control of WSe2 layer number via hydrogen-controlled chemical vapor deposition. Nanotechnology 2020, 31, 315604. [Google Scholar] [CrossRef]
- An, G.H.; Yun, S.J.; Lee, Y.H.; Lee, H.S. Growth Mechanism of Alternating Defect Domains in Hexagonal WS2 via Inhomogeneous W-Precursor Accumulation. Small 2020, 16, 2003326. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Shahzad, K.; Akbar, R.; Hussain, G. A review on Raman finger prints of doping and strain effect in TMDCs. Microelectron. Eng. 2020, 219, 111152. [Google Scholar] [CrossRef]
- Guan, H.; Tang, N.; Huang, H.; Zhang, X.; Su, M.; Liu, X.; Liao, L.; Ge, W.; Shen, B. Inversion Symmetry Breaking Induced Valley Hall Effect in Multilayer WSe2. ACS Nano 2019, 13, 9325–9331. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Ren, J.; Li, J.; Chen, Y.; Lan, S.; Wang, J.; Wang, H.; Li, D. Multistate Memory Enabled by Interface Engineering Based on Multilayer Tungsten Diselenide. ACS Appl. Mater. Interfaces 2020, 12, 58428–58434. [Google Scholar] [CrossRef] [PubMed]
WSe2 Pyramidal on Si/SiO2 | WSe2 Mono (Bi-) Layer on Fused Silica | WSe2 Multilayer on Fused Silica | WSe2 Monolayer on Sapphire | WSe2 Multilayer on Sapphire | |
---|---|---|---|---|---|
E2g FWHM (cm−1) | 2 | 2.2 | 2 | 2.5 | 2.3 |
A1g FWHM (cm−1) | 1.5 | 2 | 2 | 2.5 | 2.3 |
E2g–A1g distance (cm−1) | 3 | 1.5 | 2.5 | ≈0 | 2 |
I(A1g)/I(E2g) | 9.5 | 2.5 | 11 | 2.3 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchkov, K.; Rafailov, P.; Minev, N.; Videva, V.; Strijkova, V.; Lukanov, T.; Dimitrov, D.; Marinova, V. Metatungstate Chemical Vapor Deposition of WSe2: Substrate Effects, Shapes, and Morphologies. Crystals 2024, 14, 184. https://doi.org/10.3390/cryst14020184
Buchkov K, Rafailov P, Minev N, Videva V, Strijkova V, Lukanov T, Dimitrov D, Marinova V. Metatungstate Chemical Vapor Deposition of WSe2: Substrate Effects, Shapes, and Morphologies. Crystals. 2024; 14(2):184. https://doi.org/10.3390/cryst14020184
Chicago/Turabian StyleBuchkov, Krastyo, Peter Rafailov, Nikolay Minev, Vladimira Videva, Velichka Strijkova, Todor Lukanov, Dimitre Dimitrov, and Vera Marinova. 2024. "Metatungstate Chemical Vapor Deposition of WSe2: Substrate Effects, Shapes, and Morphologies" Crystals 14, no. 2: 184. https://doi.org/10.3390/cryst14020184
APA StyleBuchkov, K., Rafailov, P., Minev, N., Videva, V., Strijkova, V., Lukanov, T., Dimitrov, D., & Marinova, V. (2024). Metatungstate Chemical Vapor Deposition of WSe2: Substrate Effects, Shapes, and Morphologies. Crystals, 14(2), 184. https://doi.org/10.3390/cryst14020184