A Concept of an Educational Multi-Technique Beamline for Crystalline Matter Studies at Synchrotron Radiation Facility SKIF
Abstract
1. Introduction
1.1. Storage Ring and Synchrotron Radiation Source
1.2. The Concept of the Beamline
1.3. Bending Magnet Beamlines: World-Wide Experience
1.3.1. Beamline Optics Considerations
1.3.2. Experimental Techniques
2. Materials and Methods
2.1. The XRT Software Package
2.2. Three-Dimensional Models of Optical Layouts and a Channel-Cut Monochromator
2.3. Thermal Calculations
3. Results
3.1. Optical Layouts (Schemes)
3.2. Characteristics of Main Optical Elements
3.2.1. Collimation and Higher-Harmonics Rejection Mirror System
3.2.2. Monochromator System: Thermal Management
3.2.3. Focusing and Beam Defining at Sample Position
3.3. Results of Calculations
3.3.1. Scheme 1
3.3.2. Scheme 2
3.3.3. Scheme 3
3.3.4. Scheme 4
3.3.5. Scheme 5
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Einfeld, D.; Plesko, M. A Modified QBA Optics for Low Emittance Storage Rings. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1993, 335, 402–416. [Google Scholar] [CrossRef]
- Li, P.; Allain, M.; Grünewald, T.A.; Rommel, M.; Campos, A.; Carbone, D.; Chamard, V. 4th Generation Synchrotron Source Boosts Crystalline Imaging at the Nanoscale. Light Sci. Appl. 2022, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Tavares, P.F.; Al-Dmour, E.; Andersson, Å.; Cullinan, F.; Jensen, B.N.; Olsson, D.; Olsson, D.K.; Sjöström, M.; Tarawneh, H.; Thorin, S.; et al. Commissioning and First-Year Operational Results of the MAX IV 3 GeV Ring. J. Synchrotron. Rad. 2018, 25, 1291–1316. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Neuenschwander, R.T.; Rodrigues, A.R.D. Synchrotron Radiation Sources in Brazil. Phil. Trans. R. Soc. A 2019, 377, 20180235. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Xu, G.; Cui, X.-H.; Duan, Z.; Guo, Y.-Y.; He, P.; Ji, D.-H.; Li, J.-Y.; Li, X.-Y.; Meng, C.; et al. The HEPS Project. J. Synchrotron. Rad. 2018, 25, 1611–1618. [Google Scholar] [CrossRef]
- Raimondi, P. ESRF-EBS: The Extremely Brilliant Source Project. Synchrotron Radiat. News 2016, 29, 8–15. [Google Scholar] [CrossRef]
- Henderson, S. Status of the APS Upgrade Project. In Proceedings of the 6th International Particle Accelerator Conference, Richmond, VA, USA, 3–8 May 2015. IPAC2015; 3p. [Google Scholar] [CrossRef]
- Baranov, G.; Bogomyagkov, A.; Morozov, I.; Sinyatkin, S.; Levichev, E. Lattice Optimization of a Fourth-Generation Synchrotron Radiation Light Source in Novosibirsk. Phys. Rev. Accel. Beams 2021, 24, 120704. [Google Scholar] [CrossRef]
- Tanaka, T. Major Upgrade of the Synchrotron Radiation Calculation Code SPECTRA. J. Synchrotron. Rad. 2021, 28, 1267–1272. [Google Scholar] [CrossRef]
- Piminov, P.A.; Baranov, G.N.; Bogomyagkov, A.V.; Berkaev, D.E.; Borin, V.M.; Dorokhov, V.L.; Karnaev, S.E.; Kiselev, V.A.; Levichev, E.B.; Meshkov, O.I.; et al. Synchrotron Radiation Research and Application at VEPP-4. Phys. Procedia 2016, 84, 19–26. [Google Scholar] [CrossRef]
- Zolotarev, K.V.; Ancharov, A.I.; Vinokurov, Z.S.; Goldenberg, B.G.; Darin, F.A.; Kriventsov, V.V.; Kulipanov, G.N.; Cooper, K.E.; Legkodymov, A.A.; Lyubas, G.A.; et al. Synchrotron Radiation Based Research at the Novosibirsk Scientific Center. Bull. Russ. Acad. Sci. Phys. 2023, 87, 541–551. [Google Scholar] [CrossRef]
- Anashin, V.V.; Valentinov, A.G.; Veshcherevich, V.G.; Vobly, P.D.; Gavrilov, N.G.; Gorniker, E.I.; Zubkov, N.I.; Korchuganov, V.N.; Kuzminykh, V.S.; Kulipanov, G.N.; et al. The Dedicated Synchrotron Radiation Source Siberia-2. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1989, 282, 369–374. [Google Scholar] [CrossRef]
- Chernyshov, A.A.; Veligzhanin, A.A.; Zubavichus, Y.V. Structural Materials Science End-Station at the Kurchatov Synchrotron Radiation Source: Recent Instrumentation Upgrades and Experimental Results. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 603, 95–98. [Google Scholar] [CrossRef]
- Lazarenko, V.; Dorovatovskii, P.; Zubavichus, Y.; Burlov, A.; Koshchienko, Y.; Vlasenko, V.; Khrustalev, V. High-Throughput Small-Molecule Crystallography at the ‘Belok’ Beamline of the Kurchatov Synchrotron Radiation Source: Transition Metal Complexes with Azomethine Ligands as a Case Study. Crystals 2017, 7, 325. [Google Scholar] [CrossRef]
- Svetogorov, R.D.; Dorovatovskii, P.V.; Lazarenko, V.A. Belok/XSA Diffraction Beamline for Studying Crystalline Samples at Kurchatov Synchrotron Radiation Source. Cryst. Res. Technol. 2020, 55, 1900184. [Google Scholar] [CrossRef]
- Bukhtiyarov, A.V.; Bukhtiyarov, V.I.; Zhuravlev, A.N.; Zolotarev, K.V.; Zubavichus, Y.V.; Levichev, E.B.; Mezentsev, N.A.; Nikolenko, A.D.; Piminov, P.A.; Churkin, I.N. Synchrotron Radiation Facility “Siberian Circular Photon Source” (SRF SKIF). Crystallogr. Rep. 2022, 67, 690–711. [Google Scholar] [CrossRef]
- Bulavchenko, O.A.; Vinokurov, Z.S.; Selyutin, A.G.; Mishchenko, D.D.; Saraev, A.A.; Goldenberg, B.G.; Tsybulya, S.V.; Zubavichus, Y.V. Concept Design of the CCU Skif–NSU Experimental Station 1-7 “Basic Methods of Synchrotron Diagnostics for Educational, Research, and Innovative Activities of Students”. J. Struct. Chem. 2023, 64, 1329–1340. [Google Scholar] [CrossRef]
- Lang, J.C.; Srajer, G.; Wang, J.; Lee, P.L. Performance of the Advanced Photon Source 1-BM Beamline Optics. Rev. Sci. Instrum. 1999, 70, 4457–4462. [Google Scholar] [CrossRef]
- Karapetrova, E.; Ice, G.; Tischler, J.; Hong, H.; Zschack, P. Design and Performance of the 33-BM Beamline at the Advanced Photon Source. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 649, 52–54. [Google Scholar] [CrossRef]
- Chahine, G.A.; Blanc, N.; Arnaud, S.; De Geuser, F.; Guinebretière, R.; Boudet, N. Advanced Non-Destructive in Situ Characterization of Metals with the French Collaborating Research Group D2AM/BM02 Beamline at the European Synchrotron Radiation Facility. Metals 2019, 9, 352. [Google Scholar] [CrossRef]
- Solari, P.L.; Schlutig, S.; Hermange, H.; Sitaud, B. MARS, a New Beamline for Radioactive Matter Studies at SOLEIL. J. Phys. Conf. Ser. 2009, 190, 012042. [Google Scholar] [CrossRef]
- Belin, S.; Briois, V.; Traverse, A.; Idir, M.; Moreno, T.; Ribbens, M. SAMBA a New Beamline at SOLEIL for XRay Absorption Spectroscopy in the 440keV Energy Range. Phys. Scr. 2005, 980. [Google Scholar] [CrossRef]
- Rebuffi, L.; Plaisier, J.R.; Abdellatief, M.; Lausi, A.; Scardi, P. MCX: A Synchrotron Radiation Beamline for X-ray Diffraction Line Profile Analysis. Z. Anorg Allge Chem. 2014, 640, 3100–3106. [Google Scholar] [CrossRef]
- Siewert, F. Metrology, Mirrors and Gratings—Advances and Challenges in Synchrotron Optics. J. Phys. Conf. Ser. 2013, 425, 152001. [Google Scholar] [CrossRef]
- Reyes-Herrera, J.; Celestre, R.; Cammarata, M.; Barrett, R.; Levantino, M.; Sanchez Del Rio, M. X-Ray Beam Quality after a Mirror Reflection: Experimental and Simulated Results for a Toroidal Mirror in a 4th Generation Storage-Ring Beamline. Open Res. Eur. 2023, 3, 173. [Google Scholar] [CrossRef]
- Yamauchi, K.; Mimura, H.; Matsuyama, S.; Yumoto, H.; Kimura, T.; Takahashi, Y.; Tamasaku, K.; Ishikawa, T. Focusing Mirror for Coherent Hard X-Rays. In Synchrotron Light Sources and Free-Electron Lasers; Jaeschke, E., Khan, S., Schneider, J.R., Hastings, J.B., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–26. ISBN 978-3-319-04507-8. [Google Scholar]
- Kropf, A.J.; Katsoudas, J.; Chattopadhyay, S.; Shibata, T.; Lang, E.A.; Zyryanov, V.N.; Ravel, B.; McIvor, K.; Kemner, K.M.; Scheckel, K.G.; et al. The New MRCAT (Sector 10) Bending Magnet Beamline at the Advanced Photon Source; American Institute of Physics: Melbourne, VIC, Australia, 2010; pp. 299–302. [Google Scholar]
- Park, C.; Popov, D.; Ikuta, D.; Lin, C.; Kenney-Benson, C.; Rod, E.; Bommannavar, A.; Shen, G. New Developments in Micro-X-Ray Diffraction and X-Ray Absorption Spectroscopy for High-Pressure Research at 16-BM-D at the Advanced Photon Source. Rev. Sci. Instrum. 2015, 86, 072205. [Google Scholar] [CrossRef]
- Briois, V.; La Fontaine, C.; Belin, S.; Barthe, L.; Moreno, T.; Pinty, V.; Carcy, A.; Girardot, R.; Fonda, E. ROCK: The New Quick-EXAFS Beamline at SOLEIL. J. Phys. Conf. Ser. 2016, 712, 012149. [Google Scholar] [CrossRef]
- Dent, A.J.; Cibin, G.; Ramos, S.; Smith, A.D.; Scott, S.M.; Varandas, L.; Pearson, M.R.; Krumpa, N.A.; Jones, C.P.; Robbins, P.E. B18: A Core XAS Spectroscopy Beamline for Diamond. J. Phys. Conf. Ser. 2009, 190, 012039. [Google Scholar] [CrossRef]
- Fabiani, S.; Ahangarianabhari, M.; Baldazzi, G.; Bellutti, P.; Bertuccio, G.; Bruschi, M.; Bufon, J.; Carrato, S.; Castoldi, A.; Cautero, G.; et al. Development and Tests of a New Prototype Detector for the XAFS Beamline at Elettra Synchrotron in Trieste. J. Phys. Conf. Ser. 2016, 689, 012017. [Google Scholar] [CrossRef]
- Fodje, M.; Grochulski, P.; Janzen, K.; Labiuk, S.; Gorin, J.; Berg, R. 08B1-1: An Automated Beamline for Macromolecular Crystallography Experiments at the Canadian Light Source. J. Synchrotron. Rad. 2014, 21, 633–637. [Google Scholar] [CrossRef]
- Feng, R.; Dolton, W.; Igarashi, R.; Wright, G.; Bradford, M.; McIntyre, S.; Garrett, R.; Gentle, I.; Nugent, K.; Wilkins, S. Commissioning of the VESPERS Beamline at the Canadian Light Source; American Institute of Physics: Melbourne, VIC, Australia, 2010; pp. 315–318. [Google Scholar]
- Baudelet, F.; Belkhou, R.; Briois, V.; Coati, A.; Dumas, P.; Etgens, V.H.; Flank, A.M.; Fontaine, P.; Garreau, Y.; Lyon, O.; et al. Soleil a New Powerful Tool for Materials Science. Oil Gas Sci. Technol. Rev. IFP 2005, 60, 849–874. [Google Scholar] [CrossRef]
- Bearden, J.A.; Burr, A.F. Reevaluation of X-Ray Atomic Energy Levels. Rev. Mod. Phys. 1967, 39, 125–142. [Google Scholar] [CrossRef]
- Klementiev, K.; Chernikov, R. Powerful Scriptable Ray Tracing Package Xrt.; Sanchez Del Rio, M., Chubar, O., Eds.; SPIE: San Diego, CA, USA, 5 September 2014; p. 92090A. [Google Scholar]
- Klementiev, K.; Chernikov, R.; Rakitin, M. Kklmn/Xrt: Release 1.6.0. 2023. Available online: https://github.com/kklmn/xrt/releases/tag/1.6.0 (accessed on 4 November 2024).
- Klementiev, K.; Chernikov, R. New Features of Xrt: Bent Crystals, Coherent Modes, Waves with OAM. Synchrotron Radiat. News 2023, 36, 23–27. [Google Scholar] [CrossRef]
- Kahnt, M.; Klementiev, K.; Haghighat, V.; Weninger, C.; Plivelic, T.S.; Terry, A.E.; Björling, A. Measurement of the Coherent Beam Properties at the CoSAXS Beamline. J. Synchrotron. Rad. 2021, 28, 1948–1953. [Google Scholar] [CrossRef] [PubMed]
- Hennes, C. The FreeCAD Open Source Project. Available online: https://github.com/FreeCAD/FreeCAD (accessed on 4 November 2024).
- The Blender 3.6 Manual by the Blender Documentation Team. Available online: https://docs.blender.org/manual/en/3.6/index.html (accessed on 4 November 2024).
- Frederic Hecht Freefem++ Manual (Release 4.13). Available online: https://doc.freefem.org/pdf/FreeFEM-documentation.pdf (accessed on 4 November 2024).
- Jiang, B.; Zhao, D.; Wang, B.; Zhao, H.; Liu, Y.; Lu, X. Flatness Maintenance and Roughness Reduction of Silicon Mirror in Chemical Mechanical Polishing Process. Sci. China Technol. Sci. 2020, 63, 166–172. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
Magnetic field, T | 2.05 |
Critical energy, keV | 11.97 |
Beta function βx/βy, m | 0.252/7.77 |
Size of the source h/v, μm | 14.14/24.14 |
Acceptance 1 h/v, mrad | 0.8/0.4 |
Collimation and Higher-Harmonics Rejection | Monochromatization | Final Beam Shaping (Focusing) | |
---|---|---|---|
Scheme 1 | A meridionally bent mirror (collimation): 1 m long, 22 m from source, 3 stripes (Si, Rh, Pt—200 mm wide) A flat mirror (higher monochromator harmonics rejection): 1 m long, 24 m from source, 3 stripes (Si, Rh, Pt—200 mm wide). Vertically reflecting. | A channel-cut crystal (Si111) vertically reflecting monochromator: 1st crystal 30 mm long; 2nd crystal 160 mm long; gap 8 mm; 26 m from source | A K–B mirror system: two elliptical mirrors with 100 mm active lengths. First horizontal: 49.08 m from source; 2nd vertical: 49.2 m from source |
Scheme 2 | A stack of 2D Be-focusing double paraboloid lenses: around 48 m from source | ||
Scheme 3 | Beam-defining slits: 48 m from source | ||
Scheme 4 | A meridionally bent mirror (collimation): 1 m long, 22 m from source, 3 stripes (Si, Rh, Pt—200 mm wide). Vertically reflecting. | A fixed-exit double-crystal monochromator. Vertically reflecting. | A sagittally bent 2nd crystal of the monochromator. A meridionally bent mirror: 1 m long, 40 m from source, 3 stripes (Si, Rh, Pt—200 mm wide). Vertically reflecting. |
Scheme 5 | - | A channel-cut crystal (Si111) vertically reflecting monochromator: 1st crystal 30 mm long; 2nd crystal 160 mm long; gap 8 mm; 26 m from source | Beam-defining slits, 48 m from source |
Energy, keV | Optical Surface | Glancing Angle of Incidence, mrad | Radius of Curvature for Collimating Mirror, km |
---|---|---|---|
3 | Si | 4.5 | 10 |
5 | Si | 3.0 | 15 |
7 | Si | 2.5 | 19 |
9 | Si | 2.0 | 22 |
12 | Si | 2.0 | 22 |
15 | Si | 2.0 | 22 |
20 | Rh | 2.0 | 22 |
25 | Pt | 2.0 | 22 |
30 | Pt | 2.0 | 22 |
35 | Pt | 2.0 | 22 |
Energy, keV | Distance from Source, mm | Number of Lenses | Radius of Curvature, mm | Geometric Aperture, mm |
---|---|---|---|---|
3 | 48,160 | 2 | 0.2 | 1 |
5 | 48,013 | 5 | 0.2 | 1 |
7 | 48,290 | 3 | 0.05 | 0.5 |
9 | 47,996 | 4 | 0.05 | 0.5 |
12 | 47,954 | 7 | 0.05 | 0.5 |
15 | 47,975 | 11 | 0.05 | 0.5 |
20 | 47,930 | 19 | 0.05 | 0.5 |
25 | 48,045 | 32 | 0.05 | 0.5 |
30 | 48,000 | 45 | 0.05 | 0.5 |
35 | 48,050 | 65 | 0.05 | 0.5 |
Flux (ph/s) | Size (h × v FWHM, μm2) | |
---|---|---|
Schemes 1–3 (flux before monochromator after mirrors/after monochromator) | 3 keV: 1.4 × 1011/2.8 × 1010 | - |
12 keV: 8.5 × 1011/4.5 × 1011 | ||
35 keV: 2.8 × 1011/1.5 × 1011 | ||
Scheme 1 (mirrors, K–B) | 3 keV: 1.8 × 107 | 3 keV: 0.1 × 0.3 |
12 keV: 6.1 × 108 | 12 keV: 0.1 × 0.3 | |
35 keV: 8.4 × 107 | 35 keV: 0.1 × 0.3 | |
Scheme 2 (mirrors, CRLs) | 3 keV: 9.3 × 106 | 3 keV: 2.4 × 5.0 |
12 keV: 3.8 × 108 | 12 keV: 3.0 × 2.4 | |
35 keV: 6.7 × 107 | 35 keV: 10.4 × 18.5 | |
Scheme 3 (mirrors, slit) | 3 keV: 7.6 × 108 | 2000 × 2000 |
12 keV: 2.6 × 1010 | ||
35 keV: 8.8 × 109 | ||
Scheme 4 (mirrors, sag. monochromator) | 3 keV: 7.6 × 109 | 3 keV: 10.0 × 10.0 |
12 keV: 2.4 × 1011 | 12 keV: 12.0 × 12.0 | |
35 keV: 7.4 × 1010 | 35 keV: 10.0 × 10.0 | |
Scheme 5 (no mirrors, slit) | 3 keV: 7.1 × 108 | 3 keV: 2000 × 3000 |
12 keV: 4.2 × 109 | 12 keV: 2000 × 600 | |
35 keV: 7.1 × 108 | 35 keV: 2000 × 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selyutin, A.; Mishchenko, D.; Vinokurov, Z.; Bulavchenko, O.; Saraev, A.; Tsybulya, S.; Zubavichus, Y. A Concept of an Educational Multi-Technique Beamline for Crystalline Matter Studies at Synchrotron Radiation Facility SKIF. Crystals 2024, 14, 1056. https://doi.org/10.3390/cryst14121056
Selyutin A, Mishchenko D, Vinokurov Z, Bulavchenko O, Saraev A, Tsybulya S, Zubavichus Y. A Concept of an Educational Multi-Technique Beamline for Crystalline Matter Studies at Synchrotron Radiation Facility SKIF. Crystals. 2024; 14(12):1056. https://doi.org/10.3390/cryst14121056
Chicago/Turabian StyleSelyutin, Alexander, Denis Mishchenko, Zakhar Vinokurov, Olga Bulavchenko, Andrey Saraev, Sergey Tsybulya, and Yan Zubavichus. 2024. "A Concept of an Educational Multi-Technique Beamline for Crystalline Matter Studies at Synchrotron Radiation Facility SKIF" Crystals 14, no. 12: 1056. https://doi.org/10.3390/cryst14121056
APA StyleSelyutin, A., Mishchenko, D., Vinokurov, Z., Bulavchenko, O., Saraev, A., Tsybulya, S., & Zubavichus, Y. (2024). A Concept of an Educational Multi-Technique Beamline for Crystalline Matter Studies at Synchrotron Radiation Facility SKIF. Crystals, 14(12), 1056. https://doi.org/10.3390/cryst14121056