Characterization of Crystal Properties and Defects in CdZnTe Radiation Detectors
Abstract
:1. Introduction
2. Detector Simulator
3. Detector Characterization
4. Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iniewski, K. Czt detector technology for medical imaging. J. Instrum. 2014, 9, C11001. [Google Scholar] [CrossRef]
- Krawczynski, H.S.; Jung, I.; Perkins, J.S.; Burger, A.; Groza, M. Thick czt detectors for spaceborne X-ray astronomy. In Hard X-ray and Gamma-ray Detector Physics VI; SPIE: Bellingham, WA, USA, 2004; Volume 5540, pp. 1–13. [Google Scholar]
- Park, B.; Kim, Y.; Seo, J.; Byun, J.; Dedic, V.; Franc, J.; Bolotnikov, A.E.; James, R.B.; Kim, K. Bandgap engineering of Cd1−x Znx Te1−y Sey (0 < x < 0.27, 0 < y < 0.026). Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2022, 1036, 166836. [Google Scholar]
- Chun, S.D.; Park, S.H.; Lee, D.H.; Kim, Y.K.; Ha, J.H.; Kang, S.M.; Cho, Y.H.; Hong, D.G.; Kim, J.K. Property of a czt semiconductor detector for radionuclide identification. J. Nucl. Sci. Technol. 2008, 45 (Suppl. 5), 421–424. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Babalola, S.O.; Camarda, G.S.; Chen, H.; Awadalla, S.; Cui, Y.; Egarievwe, S.U.; Fochuk, P.M.; Hawrami, R.; Hossain, A.; et al. Extended defects in cdznte radiation detectors. IEEE Trans. Nucl. Sci. 2009, 56, 1775–1783. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Yang, G.; Zazvorka, J.; Dedic, V.; Franc, J.; James, R.B. Evaluation of cdzntese as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Sci. Rep. 2019, 9, 7303. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Camarda, G.C.; Wright, G.W.; James, R.B. Factors limiting the performance of cdznte detectors. IEEE Trans. Nucl. Sci. 2005, 52, 589–598. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Yang, G.; Hossain, A.; Kim, K.; James, R.B. Characterization and evaluation of extended defects in czt crystals for gamma-ray detectors. J. Cryst. Growth 2013, 379, 46–56. [Google Scholar] [CrossRef]
- Banerjee, S.; Rodrigues, M.; Vija, A.H.; Katsaggelos, A.K. A learning-based physical model of charge transport in room-temperature semiconductor detectors. IEEE Trans. Nucl. Sci. 2021, 69, 2–16. [Google Scholar] [CrossRef]
- Ballester, M.; Banerjee, S.; Rodrigues, M.; Kaspar, J.; Vija, A.H.; Katsaggelos, A.K. Materials and defects characterization of cdznte sensors using the inverse synthesis method. In Proceedings of the 2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Milano, Italy, 5–12 November 2022; pp. 1–2. [Google Scholar]
- Banerjee, S.; Rodrigues, M.; Ballester, M.; Vija, A.H.; Katsaggelos, A.K. Learning-based physical models of room-temperature semiconductor detectors with reduced data. Sci. Rep. 2023, 13, 168. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Rodrigues, M.; Ballester, M.; Vija, A.H.; Katsaggelos, A.K. Machine learning approaches in room temperature semiconductor detectors. In X-ray Photon Processing Detectors: Space, Industrial, and Medical Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 67–94. [Google Scholar]
- Banerjee, S.; Rodrigues, M.; Ballester, M.; Vija, A.H.; Katsaggelos, A. Identifying defects without a priori knowledge in a room-temperature semiconductor detector using physics inspired machine learning model. Sensors 2023, 24, 92. [Google Scholar] [CrossRef]
- Banerjee, S.; Rodrigues, M.; Ballester, M.; Vija, A.H.; Katsaggelos, A.K. A physics based machine learning model to characterize room temperature semiconductor detectors in 3d. Sci. Rep. 2024, 14, 7803. [Google Scholar] [CrossRef] [PubMed]
- Luke, P.N. Electrode configuration and energy resolution in gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 380, 232–237. [Google Scholar] [CrossRef]
- McGregor, D.S.; He, Z.; Seifert, H.A.; Rojeski, R.A.; Wehe, D.K. Cdznte semiconductor parallel strip frisch grid radiation detectors. IEEE Trans. Nucl. Sci. 1998, 45, 443–449. [Google Scholar] [CrossRef]
- McNeil, W.J.; McGregor, D.S.; Bolotnikov, A.E.; Wright, G.W.; James, R.B. Single-charge-carrier-type sensing with an insulated frisch ring cdznte semiconductor radiation detector. Appl. Phys. Lett. 2004, 84, 1988–1990. [Google Scholar] [CrossRef]
- Cirignano, L.J.; Kim, H.; Shah, K.S.; Klugerman, M.; Wong, P.; Squillante, M.R.; Li, L. Evaluation of czt detectors with capacitive frisch grid structure. In Hard X-ray and Gamma-ray Detector Physics V; SPIE: Bellingham, WA, USA, 2004; Volume 5198, pp. 1–8. [Google Scholar]
- Barrett, H.H.; Eskin, J.D.; Barber, H.B. Charge transport in arrays of semiconductor gamma-ray detectors. Phys. Rev. Lett. 1995, 75, 156. [Google Scholar] [CrossRef] [PubMed]
- Beilicke, M.; Geronimo, G.D.; Dowkontt, P.; Garson, A.; Guo, Q.; Lee, K.; Martin, J.; Krawczynski, H. Performance of pixelated czt detectors as a function of pixel and steering grid layout. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 708, 88–100. [Google Scholar] [CrossRef]
- Myronakis, M.E.; Darambara, D.G. Monte carlo investigation of charge-transport effects on energy resolution and detection efficiency of pixelated czt detectors for spect/pet applications. Med. Phys. 2011, 38, 455–467. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, T.; Lee, W. Radiation measurement and imaging using 3d position sensitive pixelated czt detector. Nucl. Eng. Technol. 2019, 51, 1417–1427. [Google Scholar] [CrossRef]
- Yin, Y.Z.; Liu, Q.; Xu, D.P.; Chen, X.M. Charge sharing effect on 600 μm pitch pixelated czt detector for imaging applications. Chin. Phys. C 2014, 38, 116002. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Nguyen, K.; Pak, R.O.; Matei, L.; Buliga, V.; Groza, M.; Burger, A.; Mandal, K.C. Fabrication and characterization of large area Cd0.9Zn0.1Te guarded pixelated detector. In Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, Republic of Korea, 27 October–2 November 2013; pp. 1–5. [Google Scholar]
- Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Geronimo, G.D.; Eger, J.; Emerick, A.; Fried, J.; Hossain, A.; Roy, U.; Salwen, C.; et al. Use of high-granularity cdznte pixelated detectors to correct response non-uniformities caused by defects in crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 805, 41–54. [Google Scholar] [CrossRef]
- Matteson, J.L.; Pelling, M.R.; Skelton, R.T. Czt detectors with 3d readout for gamma-ray spectroscopy and imaging. In X-ray and Gamma-ray Detectors and Applications IV; SPIE: Bellingham, WA, USA, 2003; Volume 4784, pp. 1–13. [Google Scholar]
- Fochuk, P.; Grill, R.; Nakonechnyi, I.; Kopach, O.; Panchuk, O.; Verzhak, Y.; Belas, E.; Bolotnikov, A.E.; Yang, G.; James, R.B. Effect of Cd0.9Zn0.1Te: In crystals annealing on their high-temperature electrical properties. IEEE Trans. Nucl. Sci. 2011, 58, 2346–2351. [Google Scholar] [CrossRef]
- Peterson, T.E.; Furenlid, L.R. Spect detectors: The anger camera and beyond. Phys. Med. Biol. 2011, 56, R145. [Google Scholar] [CrossRef] [PubMed]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Briesmeister, J.F. Mcnptm—A General Monte Carlo N-Particle Transport Code; Version 4C, LA-13709-M; Los Alamos National Laboratory: Los Alamos, NM, USA, 2000. [Google Scholar]
- He, Z. Review of the shockley–ramo theorem and its application in semiconductor gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 463, 250–267. [Google Scholar] [CrossRef]
- Makeev, A.; Rodrigues, M.; Wang, G.C.; Glick, S.J. Modeling czt/cdte X-ray photon-counting detectors. In Medical Imaging 2015: Physics of Medical Imaging; SPIE: Bellingham, WA, USA, 2015; Volume 9412, pp. 1194–1202. [Google Scholar]
- Du, Y.; LeBlanc, J.; Possin, G.E.; Yanoff, B.D.; Bogdanovich, S. Temporal response of czt detectors under intense irradiation. IEEE Trans. Nucl. Sci. 2003, 50, 1031–1035. [Google Scholar]
- Kamieniecki, E. Effect of charge trapping on effective carrier lifetime in compound semiconductors: High resistivity cdznte. J. Appl. Phys. 2014, 116, 193702. [Google Scholar] [CrossRef]
- Zimmerman, W. Experimental verification of the shockley–read–hall recombination theory in silicon. Electron. Lett. 1973, 9, 378–379. [Google Scholar] [CrossRef]
- Yang, G.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; James, R.B. Electric field distribution of cadmium zinc telluride (czt) detectors. In Hard X-ray, Gamma-ray, and Neutron Detector Physics XI; SPIE: Bellingham, WA, USA, 2009; Volume 7449, pp. 86–92. [Google Scholar]
- Buttacavoli, A.; Principato, F.; Gerardi, G.; Cascio, D.; Raso, G.; Bettelli, M.; Zappettini, A.; Seller, P.; Veale, M.C.; Abbene, L. Incomplete charge collection at inter-pixel gap in low-and high-flux cadmium zinc telluride pixel detectors. Sensors 2022, 22, 1441. [Google Scholar] [CrossRef]
- Bale, D.S.; Szeles, C. Nature of polarization in wide-bandgap semiconductor detectors under high-flux irradiation: Application to semi-insulating Cd1−xZnxTe. Phys. Rev. B 2008, 77, 035205. [Google Scholar] [CrossRef]
- Montémont, G.; Lux, S.; Monnet, O.; Stanchina, S.; Verger, L. Studying spatial resolution of czt detectors using sub-pixel positioning for spect. IEEE Trans. Nucl. Sci. 2014, 61, 2559–2566. [Google Scholar] [CrossRef]
- Benoit, M.; Hamel, L.A. Simulation of charge collection processes in semiconductor cdznte γ-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. Accel. A Spectrometers Detect. Assoc. Equip. 2009, 606, 508–516. [Google Scholar] [CrossRef]
- Ballester, M.; Kaspar, J.; Massanes, F.; Banerjee, S.; Vija, A.H.; Katsaggelos, A.K. Modeling and simulation of charge-induced signals in photon-counting czt detectors for medical imaging applications. arXiv 2024, arXiv:2405.13168. [Google Scholar]
- Dhatt, G.; Lefrançois, E.; Touzot, G. Finite Element Method; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Langtangen, H.P.; Logg, A. Solving PDEs in Python: The FEniCS Tutorial I; Springer Nature: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Watt, J.; Borhani, R.; Katsaggelos, A.K. Machine Learning Refined: Foundations, Algorithms, and Applications; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern. 2019, 50, 3668–3681. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
Material Properties | Symbol | Value | Parameter | Value | NRMSE (%) | |
---|---|---|---|---|---|---|
Noise-Free | Noisy | |||||
Charge mobility [cm2/Vs] | 1120 | 0.95 | < | 0.22 | ||
112 | 0.095 | < | 0.22 | |||
Recombination lifetime [s] | 10 | 0.001 | 2.81 | 23.81 | ||
1 | 0.01 | < | 2.86 | |||
Trapping lifetime [s] | 10 | 0.001 | 0.18 | 3.46 | ||
0.067 | 0.15 | < | 0.74 | |||
De-trapping lifetime [s] | 0.4 | 0.025 | 0.01 | 4.52 | ||
0.067 | 0.15 | < | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballester, M.; Kaspar, J.; Massanés, F.; Banerjee, S.; Vija, A.H.; Katsaggelos, A.K. Characterization of Crystal Properties and Defects in CdZnTe Radiation Detectors. Crystals 2024, 14, 935. https://doi.org/10.3390/cryst14110935
Ballester M, Kaspar J, Massanés F, Banerjee S, Vija AH, Katsaggelos AK. Characterization of Crystal Properties and Defects in CdZnTe Radiation Detectors. Crystals. 2024; 14(11):935. https://doi.org/10.3390/cryst14110935
Chicago/Turabian StyleBallester, Manuel, Jaromir Kaspar, Francesc Massanés, Srutarshi Banerjee, Alexander Hans Vija, and Aggelos K. Katsaggelos. 2024. "Characterization of Crystal Properties and Defects in CdZnTe Radiation Detectors" Crystals 14, no. 11: 935. https://doi.org/10.3390/cryst14110935
APA StyleBallester, M., Kaspar, J., Massanés, F., Banerjee, S., Vija, A. H., & Katsaggelos, A. K. (2024). Characterization of Crystal Properties and Defects in CdZnTe Radiation Detectors. Crystals, 14(11), 935. https://doi.org/10.3390/cryst14110935