Designing of WS2@NiCoS@ZnS Nanocomposite Electrode Material for High-Performance Energy Storage Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of NiCoS@ZnS
2.2. Synthesis of WS2@NiCoS@ZnS Nanocomposite
3. Results and Discussion
Characterization Techniques
4. Electrochemical Analyses
Photochemical Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.; Dong, Y.; Hu, Q.; Si, N.; Zhang, C. Electrochemical hydrogen storage materials: State-of-the-art and future perspectives. Energy Fuels 2024, 38, 7579–7613. [Google Scholar] [CrossRef]
- Sheikh, Z.A.; Vikraman, D.; Kim, H.; Aftab, S.; Shaikh, S.F.; Shahzad, F.; Jung, J.; Kim, H.S.; Hussain, S.; Kim, D.K. Perovskite oxide-based nanoparticles embedded MXene composites for supercapacitors and oxygen evolution reactions. J. Energy Storage 2024, 81, 110342. [Google Scholar] [CrossRef]
- Yang, F.; Feng, X.; Glans, P.-A.; Guo, J. MoS2 for beyond lithium-ion batteries. APL Mater. 2021, 9, 050903. [Google Scholar] [CrossRef]
- Chatterjee, D.P.; Nandi, A.K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021, 9, 15880–15918. [Google Scholar] [CrossRef]
- Hussain, S.; Vikraman, D.; Mehran, M.T.; Hussain, M.; Nazir, G.; Patil, S.A.; Kim, H.-S.; Jung, J. Ultrasonically derived WSe2 nanostructure embedded MXene hybrid composites for supercapacitors and hydrogen evolution reactions. Renew. Energy 2022, 185, 585–597. [Google Scholar] [CrossRef]
- Vikraman, D.; Hussain, S.; Abbas, Z.; Karuppasamy, K.; Kang, W.-S.; Santhoshkumar, P.; Kathalingam, A.; Jung, J.; Kim, H.-S. Exploring the experimental study and density functional theory calculations of symmetric and asymmetric chalcogen atoms interacted molybdenum dichalcogenides for lithium-ion batteries. J. Mater. Sci. Technol. 2023, 162, 44–56. [Google Scholar] [CrossRef]
- Vikraman, D.; Hussain, S.; Rabani, I.; Feroze, A.; Ali, M.; Seo, Y.-S.; Chun, S.-H.; Jung, J.; Kim, H.-S. Engineering MoTe2 and Janus SeMoTe nanosheet structures: First-principles roadmap and practical uses in hydrogen evolution reactions and symmetric supercapacitors. Nano Energy 2021, 87, 106161. [Google Scholar] [CrossRef]
- Vikraman, D.; Hussain, S.; Karuppasamy, K.; Feroze, A.; Kathalingam, A.; Sanmugam, A.; Chun, S.-H.; Jung, J.; Kim, H.-S. Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications. Appl. Catal. B Environ. 2020, 264, 118531. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Zhan, C.; Zhang, K.; Lai, X.; Tu, J.; Cao, Y. 3D hierarchical NiS2/MoS2 nanostructures on CFP with enhanced electrocatalytic activity for hydrogen evolution reaction. J. Mater. Sci. Technol. 2020, 39, 155–160. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.-J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Liu, C.; Gao, L.; Sun, Y.; Liu, Q.; Zhang, X.; Guo, J. MoS2 nanosheets decorated Ni(OH)2 nanorod array for active overall water splitting. J. Alloys Compd. 2019, 796, 86–92. [Google Scholar] [CrossRef]
- Ling, Y.; Kazim, F.M.; Ma, S.; Zhang, Q.; Qu, K.; Wang, Y.; Xiao, S.; Cai, W.; Yang, Z. Strain induced rich planar defects in heterogeneous WS2/WO2 enable efficient nitrogen fixation at low overpotential. J. Mater. Chem. A 2020, 8, 12996–13003. [Google Scholar] [CrossRef]
- Yan, R.; Wang, J.; He, S.; Huang, L.; Wang, B.; Zhu, M.; Hu, S. Quasi-solid-state silicon-air batteries with high capacities and wide-temperature adaptabilities. Energy Storage Mater. 2024, 71, 103656. [Google Scholar] [CrossRef]
- Ji, L.; Cao, H.; Xing, W.; Liu, S.; Deng, Q.; Shen, S. Facilitating electrocatalytic hydrogen evolution via multifunctional tungsten@ tungsten disulfide core–shell nanospheres. J. Mater. Chem. A 2021, 9, 9272–9280. [Google Scholar] [CrossRef]
- Dai, J.; Luo, L.; Tang, Z.; Lv, Y.; Xie, H.; Zuo, H.; Yang, C.; Wang, X.; Fan, M.; Xu, Y. Strategy for constructing highly stable supercapacitors: Channeling of thin-layer polyaniline to enhance pseudo-capacitance of the CuS/polyaniline@ MoS2 composites. Compos. Sci. Technol. 2022, 219, 109240. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; Huang, M.; Zhang, Q.; Zhao, X.; He, Y.; Lin, S.; Pan, J.; Zhu, H. One-step synthesis of a hierarchical self-supported WS2 film for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2019, 7, 22405–22411. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Qin, J.; Liu, R. Taming the challenges of activity and selectivity in catalysts for electrochemical N2 fixation via single metal atom supported on WS2. Appl. Surf. Sci. 2022, 571, 151357. [Google Scholar] [CrossRef]
- Vikraman, D.; Hussain, S.; Karuppasamy, K.; Kathalingam, A.; Jo, E.-B.; Sanmugam, A.; Jung, J.; Kim, H.-S. Engineering the active sites tuned MoS2 nanoarray structures by transition metal doping for hydrogen evolution and supercapacitor applications. J. Alloys Compd. 2022, 893, 162271. [Google Scholar] [CrossRef]
- Wang, H.; Shu, T.; Lin, C.; Sun, F.; Wang, Z.; Lin, B.; Wei, F.; Yao, K.X.; Qi, J.; Sui, Y. Hierarchical construction of Co3S4 nanosheet coated by 2D multi-layer MoS2 as an electrode for high performance supercapacitor. Appl. Surf. Sci. 2022, 578, 151897. [Google Scholar] [CrossRef]
- Yuan, P.; Xue, R.; Wang, Y.; Su, Y.; Zhao, B.; Wu, C.; An, W.; Zhao, W.; Ma, R.; Hu, D. Horizontally-oriented barium titanate@ polydomine/polyimide nanocomposite films for high-temperature energy storage. J. Colloid Interface Sci. 2024, 662, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Goikolea, E.; Balducci, A.; Naoi, K.; Taberna, P.-L.; Salanne, M.; Yushin, G.; Simon, P. Materials for supercapacitors: When Li-ion battery power is not enough. Mater. Today 2018, 21, 419–436. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Khan, J.; Awan, H.T.A.; Alzaid, M.; Afzal, A.M.; Aftab, S. Cobalt–manganese-zinc ternary phosphate for high performance supercapattery devices. Dalton Trans. 2020, 49, 16715–16727. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Khan, J. Optimization of cobalt-manganese binary sulfide for high performance supercapattery devices. Electrochim. Acta 2021, 368, 137529. [Google Scholar] [CrossRef]
- Wei, B.; Liang, H.; Wang, R.; Zhang, D.; Qi, Z.; Wang, Z. One-step synthesis of graphitic-C3N4/ZnS composites for enhanced supercapacitor performance. J. Energy Chem. 2018, 27, 472–477. [Google Scholar] [CrossRef]
- Gao, L.; Cao, M.; Zhang, C.; Li, J.; Zhu, X.; Guo, X.; Toktarbay, Z. Zinc selenide/cobalt selenide in nitrogen-doped carbon frameworks as anode materials for high-performance sodium-ion hybrid capacitors. Adv. Compos. Hybrid Mater. 2024, 7, 1–11. [Google Scholar] [CrossRef]
- Rauf, M.; Shah, S.S.; Shah, S.K.; Shah, S.N.A.; Haq, T.U.; Shah, J.; Ullah, A.; Ahmad, T.; Khan, Y.; Aziz, M. Facile hydrothermal synthesis of zinc sulfide nanowires for high-performance asymmetric supercapacitor. J. Saudi Chem. Soc. 2022, 26, 101514. [Google Scholar] [CrossRef]
- Chameh, B.; Moradi, M.; Kaveian, S. Synthesis of hybrid ZIF-derived binary ZnS/CoS composite as high areal-capacitance supercapacitor. Synth. Met. 2020, 260, 116262. [Google Scholar] [CrossRef]
- Wang, X.; Tian, L.; Long, X.; Yang, M.; Song, X.; Xie, W.; Liu, D.; Fu, Y.; Li, J.; Li, Y. Cracked bark-inspired ternary metallic sulfide (NiCoMnS4) nanostructure on carbon cloth for high-performance aqueous asymmetric supercapacitors. Sci. China Mater. 2021, 64, 1632–1641. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Khan, J.; Afzal, A.M.; Aftab, S. Exploring the synergetic electrochemical performance of cobalt sulfide/cobalt phosphate composites for supercapattery devices with high-energy and rate capability. Electrochim. Acta 2021, 384, 138358. [Google Scholar] [CrossRef]
- Choudhary, N.; Li, C.; Chung, H.-S.; Moore, J.; Thomas, J.; Jung, Y. High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers. ACS Nano 2016, 10, 10726–10735. [Google Scholar] [CrossRef]
- Eftekhari, A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications. J. Mater. Chem. A 2017, 5, 18299–18325. [Google Scholar] [CrossRef]
- Cherusseri, J.; Choudhary, N.; Kumar, K.S.; Jung, Y.; Thomas, J. Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horiz. 2019, 4, 840–858. [Google Scholar] [CrossRef]
- Mohan, V.V.; Manuraj, M.; Anjana, P.M.; Rakhi, R.B.J.E.T. WS2 nanoflowers as efficient electrode materials for supercapacitors. Energy Technol. 2022, 10, 2100976. [Google Scholar] [CrossRef]
- Gupta, H.; Chakrabarti, S.; Mothkuri, S.; Padya, B.; Rao, T.; Jain, P. High performance supercapacitor based on 2D-MoS2 nanostructures. Mater. Today Proc. 2020, 26, 20–24. [Google Scholar] [CrossRef]
- Elías, A.L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R.; Feng, S.; Long, A.D.; Hayashi, T.; Kim, Y.A.; Endo, M. Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 2013, 7, 5235–5242. [Google Scholar] [CrossRef]
- Krishna, T.; Himasree, P.; Raghavendra, K.; Rao, S.S.; Kundakarla, N.B.; Punnoose, D.; Kim, H. Hydrothermal synthesis of layered CoS@WS2 nanocomposite as a potential electrode for high-performance supercapacitor applications. J. Mater. Sci. Mater. Electron. 2020, 31, 16290–16298. [Google Scholar] [CrossRef]
- Shrivastav, V.; Sundriyal, S.; Goel, P.; Shrivastav, V.; Tiwari, U.K.; Deep, A. ZIF-67 derived Co3S4 hollow microspheres and WS2 nanorods as a hybrid electrode material for flexible 2V solid-state supercapacitor. Electrochim. Acta 2020, 345, 136194. [Google Scholar] [CrossRef]
- Thiehmed, Z.; Shakoor, A.; Altahtamouni, T. Recent advances in WS2 and its based heterostructures for water-splitting applications. Catalysts 2021, 11, 1283. [Google Scholar] [CrossRef]
- Štengl, V.; Tolasz, J.; Popelková, D. Ultrasonic preparation of tungsten disulfide single-layers and quantum dots. RSC Adv. 2015, 5, 89612–89620. [Google Scholar] [CrossRef]
- Ali, Y.; Nguyen, V.-T.; Nguyen, N.-A.; Shin, S.; Choi, H.-S. Transition-metal-based NiCoS/C-dot nanoflower as a stable electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 8214–8222. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, J.; Gu, T.; Guo, H.; Wang, H.; Imran, M.; Ren, R.-P.; Lv, Y.-K. Porous NiCoS nanosheets decorated activated carbon cloth for flexible asymmetric supercapacitors. Diam. Relat. Mater. 2022, 127, 109154. [Google Scholar] [CrossRef]
- Imran, M.; Waris, M.H.; Khan, R.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, M.A.; Ghfar, A.A.; Ali, A.; Mumtaz, S.; Hussain, Z. High-performance energy storage hybrid supercapacitor device based on NiCoS@ CNT@ graphene composite electrode material. Phys. Scr. 2023, 98, 115981. [Google Scholar] [CrossRef]
- Qin, Y.; Peng, Y.; Yang, W.; Wang, Y.; Cui, J.; Zhang, Y. Ultrathin exfoliated WS2 nanosheets in low-boiling-point solvents for high-efficiency hydrogen evolution reaction. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 012079. [Google Scholar]
- Wang, G.; Geng, B.; Huang, X.; Wang, Y.; Li, G.; Zhang, L. A convenient ultrasonic irradiation technique for in situ synthesis of zinc sulfide nanocrystallites at room temperature. Appl. Phys. A 2003, 77, 933–936. [Google Scholar] [CrossRef]
- Pal, S.; Dutta, S.; De, S. Synthesis of MoS2/rGO nanosheets hybrid materials for enhanced visible light assisted photocatalytic activity. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2018; p. 050129. [Google Scholar]
- Kumar, Y.A.; Mani, G.; Pallavolu, M.R.; Sambasivam, S.; Nallapureddy, R.R.; Selvaraj, M.; Alfakeer, M.; Bahajjaj, A.A.A.; Ouladsmane, M.; Rao, S.S.; et al. Facile synthesis of efficient construction of tungsten disulfide/iron cobaltite nanocomposite grown on nickel foam as a battery-type energy material for electrochemical supercapacitors with superior performance. J. Colloid Interface Sci. 2022, 609, 434–446. [Google Scholar] [CrossRef]
- Zhou, Y.; Duan, R. Leak-Proof Reversible Thermochromic Microcapsule Phase Change Materials with High Latent Thermal Storage for Thermal Management. ACS Appl. Energy Mater. 2024, 7, 5944–5956. [Google Scholar] [CrossRef]
- Yuan, P.; Southon, P.D.; Liu, Z.; Green, M.E.; Hook, J.M.; Antill, S.J.; Kepert, C.J. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C 2008, 112, 15742–15751. [Google Scholar] [CrossRef]
- Imran, M.; Iqbal, M.W.; Afzal, A.M.; Faisal, M.M.; Alzahrani, H. Synergetic electrochemical performance of Nix–Mnx sulfide-based binary electrode material for supercapattery devices. J. Appl. Electrochem. 2023, 53, 1125–1136. [Google Scholar] [CrossRef]
- Choi, S.H.; Boo, S.J.; Lee, J.-H.; Kang, Y.C. Electrochemical properties of tungsten sulfide–carbon composite microspheres prepared by spray pyrolysis. Sci. Rep. 2014, 4, 5755. [Google Scholar] [CrossRef]
- Zeng, P.; Ji, X.; Su, Z.; Zhang, S. WS2/gC3N4 composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis. RSC Adv. 2018, 8, 20557–20567. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ding, L.; Yin, S.; Liang, Z.; Xue, Y.; Wang, X.; Cui, H.; Tian, J. Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T-WS2 as co-catalysts. Nano-Micro Lett. 2020, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Qian, D.; Chen, J.; Luo, H.; Wang, F.; Hua, L. Electric current-induced directional slip of dislocation and grain boundary ordering. Mater. Today Adv. 2024, 24, 100530. [Google Scholar] [CrossRef]
- Imran, M.; Qasam, K.; Safdar, S.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Munnaf, S.A.; Habila, M.A.; Fatima, W.; Ahmad, Z. Hydrothermally synthesized CuNiS@CNTs composite electrode material for hybrid supercapacitors and non-enzymatic electrochemical glucose sensor. J. Mater. Sci. Mater. Electron. 2024, 35, 441. [Google Scholar] [CrossRef]
- Hengne, A.M.; Samal, A.K.; Enakonda, L.R.; Harb, M.; Gevers, L.E.; Anjum, D.H.; Hedhili, M.N.; Saih, Y.; Huang, K.-W.; Basset, J.-M. Ni–Sn-supported ZrO2 catalysts modified by indium for selective CO2 hydrogenation to methanol. ACS Omega 2018, 3, 3688–3701. [Google Scholar] [CrossRef]
- Carey, B.J.; Daeneke, T.; Nguyen, E.P.; Wang, Y.; Ou, J.Z.; Zhuiykov, S.; Kalantar-Zadeh, K. Two solvent grinding sonication method for the synthesis of two-dimensional tungsten disulphide flakes. Chem. Commun. 2015, 51, 3770–3773. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Faisal, M.M.; Sulman, M.; Ali, S.R.; Alzaid, M. Facile synthesis of strontium oxide/polyaniline/graphene composite for the high-performance supercapattery devices. J. Electroanal. Chem. 2020, 879, 114812. [Google Scholar] [CrossRef]
- Dey, K.K.; Jha, S.; Kumar, A.; Gupta, G.; Srivastava, A.K.; Ingole, P.P. Layered vanadium oxide nanofibers as impressive electrocatalyst for hydrogen evolution reaction in acidic medium. Electrochim. Acta 2019, 312, 89–99. [Google Scholar] [CrossRef]
- Imran, M.; Muhammad, Z.; Muzafar, N.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Munnaf, S.A.; Albaqami, M.D.; Ahmad, Z. Enhanced the electrochemical performance of CoMgS nanocomposite electrode with the doping of ZnO for supercapacitor-battery hybrid device and photochemical activity. J. Appl. Electrochem. 2024, 54, 1501–1515. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, M.; Afzal, A.M.; Alqarni, A.S.; Iqbal, M.W.; Mumtaz, S. Designing of WS2@NiCoS@ZnS Nanocomposite Electrode Material for High-Performance Energy Storage Applications. Crystals 2024, 14, 916. https://doi.org/10.3390/cryst14110916
Imran M, Afzal AM, Alqarni AS, Iqbal MW, Mumtaz S. Designing of WS2@NiCoS@ZnS Nanocomposite Electrode Material for High-Performance Energy Storage Applications. Crystals. 2024; 14(11):916. https://doi.org/10.3390/cryst14110916
Chicago/Turabian StyleImran, Muhammad, Amir Muhammad Afzal, Areej S. Alqarni, Muhammad Waqas Iqbal, and Sohail Mumtaz. 2024. "Designing of WS2@NiCoS@ZnS Nanocomposite Electrode Material for High-Performance Energy Storage Applications" Crystals 14, no. 11: 916. https://doi.org/10.3390/cryst14110916
APA StyleImran, M., Afzal, A. M., Alqarni, A. S., Iqbal, M. W., & Mumtaz, S. (2024). Designing of WS2@NiCoS@ZnS Nanocomposite Electrode Material for High-Performance Energy Storage Applications. Crystals, 14(11), 916. https://doi.org/10.3390/cryst14110916