Effect of Humidity Exposure on Microstructure and Photoluminescence Properties of Polycrystalline CsI(Tl) Screens
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Methods of the CsI(Tl) Screen
2.3. Methods for Evaluation
3. Results and Discussion
3.1. Microstructure Morphology
3.2. X-ray Diffraction Patterns
3.3. Fourier Transform Infrared Spectroscopy
3.4. Photoluminescence and Imaging Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jana, A.; Cho, S.; Patil, S.A.; Meena, A.; Jo, Y.; Sree, V.G.; Park, Y.; Kim, H.; Im, H.; Taylor, R.A. Perovskite: Scintillators, Direct Detectors, and X-Ray Imagers. Mater. Today 2022, 55, 110–136. [Google Scholar] [CrossRef]
- Mianowska, Z.; Moszynski, M.; Brylew, K.; Chabera, M.; Dziedzic, A.; Gektin, A.V.; Krakowski, T.; Mianowski, S.; Syntfeld-Każuch, A.; Szczesniak, T.; et al. The Light Response of CsI:Tl Crystal after Interaction with Gamma Radiation Study Using Analysis of Single Scintillation Pulses and Digital Oscilloscope Readout. Nucl. Instrum. Methods Phys. Res. A 2022, 1031, 166600. [Google Scholar] [CrossRef]
- Sekiya, H.; Hattori, K.; Kubo, H.; Miuchi, K.; Nagayoshi, T.; Nishimura, H.; Okada, Y.; Orito, R.; Takada, A.; Takeda, A.; et al. Studies of the Performance of Different Front-End Systems for Flat-Panel Multi-Anode PMTs with CsI(Tl) Scintillator Arrays. Nucl. Instrum. Methods Phys. Res. A 2006, 563, 49–53. [Google Scholar] [CrossRef][Green Version]
- Popov, A.I.; Chernov, S.A.; Trinkler, L.E. Time-Resolved Luminescence of CsI-Tl Crystals Excited by Pulsed Electron Beam. Nucl. Instrum. Methods Phys. Res. B 1997, 122, 602–605. [Google Scholar] [CrossRef]
- Nagesh, S.S.; Rana, R.; Russ, M.; Ionita, C.; Bednarek, D.; Rudin, S. WE-G-204-04: Focal Spot Deblurring For High Resolution Amorphous Selenium (ASe) Complementary Metal Oxide Semiconductor (CMOS) X-Ray Detector. Med. Phys. 2015, 42, 3694. [Google Scholar] [CrossRef]
- Tan, H.; DeVol, T.A. Development of a Flow-Cell Alpha Detector Utilizing Microencapsulated CsI:Tl Granules and Silicon PIN-Photodiodes. IEEE Trans. Nucl. Sci. 2002, 49, 1243–1248. [Google Scholar] [CrossRef]
- Chen, H.; Gu, M.; Liu, X.; Zhang, J.; Huang, S.; Liu, B.; Ni, C. Effect of CsI(Tl) Micro-Conical-Frustums on the Performance of the Pixelated CsI(Tl) Scintillation Screen in X-Ray Imaging. Nucl. Instrum. Methods Phys. Res. A 2018, 921, 18–21. [Google Scholar] [CrossRef]
- Li, Y.; Ge, L.; Zeng, G.; Huang, R. Energy Spectrum Response of a CsI(Tl) Detector Read out by an APD. J. Instrum. 2020, 15, T05005. [Google Scholar] [CrossRef]
- Sun, Z.; Gu, M.; Liu, X.; Liu, B.; Zhang, J.; Huang, S.; Ni, C. Influence of Si Wall Thickness of CsI(Tl) Micro-Square-Frustums on the Performance of the Structured CsI(Tl) Scintillation Screen in X-Ray Imaging. Sci. Rep. 2022, 12, 8748. [Google Scholar] [CrossRef]
- Guo, L.; Liu, S.; Wang, T.; Tan, X.; Lu, R.; Zhang, S.; Liu, Y.; Zhong, Z.; Falco, C.M. Growth Mechanism of Polycrystalline CsI(Tl) Films on Glass and Single Crystal Si Substrates. J. Cryst. Growth 2019, 506, 19–23. [Google Scholar] [CrossRef]
- Guo, L.; Liu, S.; Chen, D.; Zhang, S.; Liu, Y.; Zhong, Z.; Falco, C.M. Structure and Scintillation Properties of CsI(Tl) Films on Si Single Crystal Substrates. Appl. Surf. Sci. 2016, 384, 225–229. [Google Scholar] [CrossRef]
- Chernov, S.A.; Trinkler, L.; Popov, A.I. Photo- and Thermo-Stimulated Luminescence of CsI—Tl Crystal after UV Light Irradiation at 80 K. Radiat. Eff. Defects Solids 1998, 143, 345–355. [Google Scholar] [CrossRef]
- Sivasankar, V.S.; Jacobs, P.W.M. Luminescence Spectroscopy of CsI: Tl+. Philos. Mag. B 1985, 51, 479–488. [Google Scholar] [CrossRef]
- Yakovlev, V.; Trefilova, L. A-Luminescence in CsI:Tl Crystal Excited by Pulsed Electron Beam. Nucl. Instrum. Methods Phys. Res. B 2023, 537, 140–146. [Google Scholar] [CrossRef]
- Rogulis, U.; Spaeth, J.-M.; Elsts, E.; Dolgopolova, A. Tl-Related Radiation Defects in CsI:Tl. Radiat. Meas. 2004, 38, 389–392. [Google Scholar] [CrossRef]
- Nikbakht, T.; Vosoughi, Y. Characterization of CsI(Na) Crystal Using Ionoluminescence Microscopy Technique. Nucl. Instrum. Methods Phys. Res. B 2023, 537, 95–99. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, B.; Townsend, P.D. Radioluminescence and Thermoluminescence Properties of X-Ray-Irradiated Pure CsI. J. Lumin. 2008, 128, 1191–1196. [Google Scholar] [CrossRef]
- Leblans, P.; Struye, L.; Elen, S.; Mans, I.; Vrielinck, H.; Callens, F. X-Ray Enhancement of CsI:Eu2+ Radioluminescence. J. Lumin. 2015, 165, 68–76. [Google Scholar] [CrossRef]
- Nagarkar, V.V.; Tipnis, S.V.; Gaysinskiy, V.; Miller, S.R.; Shestakova, I. High-Speed Digital Radiography Using Structured CsI Screens. Nucl. Instrum. Methods Phys. Res. B 2004, 213, 476–480. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, L.; Liu, S.; Wang, Q.; Zhang, S.; Liu, Y.; Zhong, Z. Study on the Effect of Deposition Rate and Concentration of Eu on the Fluorescent Lifetime of CsI: Tl Thin Film. Nucl. Instrum. Methods Phys. Res. A 2016, 858, 18–21. [Google Scholar] [CrossRef]
- Guo, L.; Liu, S.; Chen, D.; Zhang, S.; Liu, Y.; Zhong, Z.; Falco, C.M. Fabrication and Performance of Micron Thick CsI(Tl) Films for X-Ray Imaging Application. IEEE Trans. Nucl. Sci. 2016, 63, 1827–1831. [Google Scholar] [CrossRef]
- Kim, C.; Lee, W.; Melis, A.; Elmughrabi, A.; Lee, K.; Park, C.; Yeom, J.-Y. A Review of Inorganic Scintillation Crystals for Extreme Environments. Crystals 2021, 11, 669. [Google Scholar] [CrossRef]
- Yang, P.; Harmon, C.D.; Doty, F.P.; Ohlhausen, J.A. Effect of Humidity on Scintillation Performance in Na and Tl Activated CsI Crystals. IEEE Trans. Nucl. Sci. 2014, 61, 1024–1031. [Google Scholar] [CrossRef]
- Fedorov, A.; Lebedinsky, A.; Mateychenko, P. Dewetting Behavior of CsI Layers on LiF Substrate. J. Cryst. Growth 2011, 318, 595–598. [Google Scholar] [CrossRef]
- Kerrigan, G.C.; O’Connor, B.H.; Thomas, W.W. The Deterioration in Counting Efficiency of a Scintillation Detector. X-ray Spectrom. 1972, 1, 163–164. [Google Scholar] [CrossRef]
- Fölsch, S.; Henzler, M. Water Adsorption on the NaCl Surface. Surf. Sci. 1991, 247, 269–273. [Google Scholar] [CrossRef]
- Shakhova, K.V.; Panova, A.N.; Goriletsky, V.I.; Prikhod’ko, Y.A.; Gavrylyuk, V.P.; Korsunova, S.P.; Kosinov, N.N. Luminescence and Scintillation Properties of Na-Activated CsI–CsBr Crystals. Radiat. Meas. 2001, 33, 769–771. [Google Scholar] [CrossRef]
- Keillor, M.E.; Cooper, M.W.; Hayes, J.C.; McIntyre, J.I. Degradation of 81 KeV 133Xe Gamma-Rays into the 31 KeV X-Ray Peak in CsI Scintillators. J. Radioanal. Nucl. Chem. 2009, 282, 699–702. [Google Scholar] [CrossRef]
- Triloki; Dutta, B.; Singh, B.K. Influence of Humidity on the Photoemission Properties and Surface Morphology of Cesium Iodide Photocathode. Nucl. Instrum. Methods Phys. Res. A 2012, 695, 279–282. [Google Scholar] [CrossRef]
- Tian, C.; Liu, S.; Xie, Y.; Guo, L.; Zhang, S.; Liu, Y.; Zhong, Z. Influence of the Humid Air on the Structure and Fluorescent Property of CsI:Tl Thin Film. J. Mater. Sci. Mater. Electron. 2019, 30, 7691–7694. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, A.; Liu, Y.; Liu, H.; Hu, T.; Zhou, L.; Cai, X.; Fang, J.; Yu, B.; Ge, Y.; et al. Influence of Air Exposure on CsI Photocathodes. Nucl. Instrum. Methods Phys. Res. A 2012, 689, 79–86. [Google Scholar] [CrossRef]
- Nitti, M.A.; Senesi, G.S.; Liotino, A.; Nappi, E.; Valentini, A.; Singh, B.K. Influence of the Film Deposition Rate and Humidity on the Properties of Thin CsI Photocathodes. Nucl. Instrum. Methods Phys. Res. A 2004, 523, 323–333. [Google Scholar] [CrossRef]
- Nitti, M.A.; Nappi, E.; Valentini, A.; Bénédic, F.; Bruno, P.; Cicala, G. Progress in the Production of CsI and Diamond Thin Film Photocathodes. Nucl. Instrum. Methods Phys. Res. A 2005, 553, 157–164. [Google Scholar] [CrossRef]
- Foster, M.C.; Ewing, G.E. Adsorption of Water on the NaCl(001) Surface. II. An Infrared Study at Ambient Temperatures. J. Chem. Phys. 2000, 112, 6817–6826. [Google Scholar] [CrossRef]
- Foster, M.; D’Agostino, M.; Passno, D. Water on MgO(100)—An Infrared Study at Ambient Temperatures. Surf. Sci. 2005, 590, 31–41. [Google Scholar] [CrossRef]
- Smart, R.S.C.; Sheppard, N. Infrared and Far Infrared Spectroscopic Studies of the Adsorption of Water Molecules on High-Area Alkali Halide Surfaces. J. Chem. Soc. Faraday Trans. 2 1976, 72, 707–714. [Google Scholar] [CrossRef]
- Vafaei, S.; Wen, D. Modification of the Young-Laplace Equation and Prediction of Bubble Interface in the Presence of Nanoparticles. Adv. Colloid. Interface Sci. 2015, 225, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, M.; Matsunaga, K.; Murakami, M. The Effect of Strain on Abnormal Grain Growth in Cu Thin Films. J. Electron. Mater. 2003, 32, 261–267. [Google Scholar] [CrossRef]
- Hoedlmoser, H.; Braem, A.; De Cataldo, G.; Davenport, M.; Di Mauro, A.; Franco, A.; Gallas, A.; Martinengo, P.; Nappi, E.; Piuz, F.; et al. Long Term Performance and Ageing of CsI Photocathodes for the ALICE/HMPID Detector. Nucl. Instrum. Methods Phys. Res. A 2007, 574, 28–38. [Google Scholar] [CrossRef]
- Nitti, M.A.; Cioffi, N.; Nappi, E.; Singh, B.K.; Valentini, A. Influence of Bias Voltage on the Stability of CsI Photocathodes Exposed to Air. Nucl. Instrum. Methods Phys. Res. A 2002, 493, 16–24. [Google Scholar] [CrossRef]
- Engkvist, O.; Stone, A.J. Adsorption of Water on the NaCl(001) Surface. III. Monte Carlo Simulations at Ambient Temperatures. J. Chem. Phys. 2000, 112, 6827–6833. [Google Scholar] [CrossRef]
- McBride, F.; Hodgson, A. Water and Its Partially Dissociated Fragments at Metal Surfaces. Int. Rev. Phys. Chem. 2017, 36, 1–38. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Jiang, B.; Tian, C.; Chen, P.; Liu, S. Effect of Humidity Exposure on Microstructure and Photoluminescence Properties of Polycrystalline CsI(Tl) Screens. Crystals 2023, 13, 1355. https://doi.org/10.3390/cryst13091355
Guo L, Jiang B, Tian C, Chen P, Liu S. Effect of Humidity Exposure on Microstructure and Photoluminescence Properties of Polycrystalline CsI(Tl) Screens. Crystals. 2023; 13(9):1355. https://doi.org/10.3390/cryst13091355
Chicago/Turabian StyleGuo, Lina, Biyou Jiang, Chunhui Tian, Ping Chen, and Shuang Liu. 2023. "Effect of Humidity Exposure on Microstructure and Photoluminescence Properties of Polycrystalline CsI(Tl) Screens" Crystals 13, no. 9: 1355. https://doi.org/10.3390/cryst13091355
APA StyleGuo, L., Jiang, B., Tian, C., Chen, P., & Liu, S. (2023). Effect of Humidity Exposure on Microstructure and Photoluminescence Properties of Polycrystalline CsI(Tl) Screens. Crystals, 13(9), 1355. https://doi.org/10.3390/cryst13091355