Structural Analysis and Reactivity Insights of (E)-Bromo-4-((4-((1-(4-chlorophenyl)ethylidene)amino)-5-phenyl-4H-1,2,4-triazol-3-yl)thio)-5-((2-isopropylcyclohexyl)oxy) Furan-2(5H)-one: A Combined Approach Using Single-Crystal X-ray Diffraction, Hirshfeld Surface Analysis, and Conceptual Density Functional Theory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Single-Crystal X-ray Diffraction
2.2. Hirshfeld Surface Analysis
2.3. Energy Framework Study
2.4. Computational Details
3. Results
3.1. A Crystallographic Study of Molecular Geometries and Supramolecular Characteristics
3.2. Hirshfeld and Other Surfaces
3.3. Energy Frameworks
3.4. Chemical Reactivity Properties
3.4.1. Analysis of CDFT Reactivity Indices
- a.
- Frontier molecular orbitals (FMOs) for the investigated compound
- b.
- Global Reactivity Descriptors for the Investigated Compound
- c.
- Local Reactivity Descriptors for the Investigated Compound
3.4.2. Aromaticity and π–π Stacking Ability of the Tested Compound
- Molecular geometry: although cyclohexane is non-planar, slight deviations or perturbations in the molecule’s geometry during the calculations might influence the derived electronic characteristics, leading to misleading aromaticity indices.
- Inherent limitations: every index, regardless of its robustness, has inherent limitations. They might not always accurately reflect the true nature of a molecule, especially in edge cases or systems that deviate from standard aromatic compounds.
3.5. The Molecular Electrostatic Potential (MEP)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Li, X.-Q.; Liu, H.-M.; Zhou, X.-Z.; Shao, Z.-H. Synthesis and evaluation of antitumor activities of novel chiral 1, 2, 4-triazole Schiff bases bearing γ-butenolide moiety. Org. Med. Chem. Lett. 2012, 2, 26. [Google Scholar] [CrossRef]
- Bekircan, O.; Bektas, H. Synthesis of new bis-1, 2, 4-triazole derivatives. Molecules 2006, 11, 469–477. [Google Scholar] [CrossRef]
- Li, Z.; Gu, Z.; Yin, K.; Zhang, R.; Deng, Q.; Xiang, J. Synthesis of substituted-phenyl-1,2,4-triazol-3-thione analogues with modified d-glucopyranosyl residues and their antiproliferative activities. Eur. J. Med. Chem. 2009, 44, 4716–4720. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Turner, M.; McKinnon, J.; Wolff, S.; Grimwood, D.; Spackman, P.; Jayatilaka, D.; Spackman, M. CrystalExplorer (Version 17.5); University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. Sect. B 2004, 60, 627–668. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J.; Jayatilaka, D. Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm 2008, 10, 377–388. [Google Scholar] [CrossRef]
- Bulat, F.A.; Toro-Labbé, A.; Brinck, T.; Murray, J.S.; Politzer, P. Quantitative analysis of molecular surfaces: Areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 2010, 16, 1679–1691. [Google Scholar] [CrossRef]
- Wolff, S.; Grimwood, D.; McKinnon, J.; Turner, M.; Jayatilaka, D.; Spackman, M. CrystalExplorer, Version 3.1; University of Western Australia: Perth, Australia, 2012. [Google Scholar]
- Politzer, P.; Murray, J.S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 2002, 108, 134–142. [Google Scholar] [CrossRef]
- Hajji, M.; Mtiraoui, H.; Amiri, N.; Msaddek, M.; Guerfel, T. Crystallographic and first-principles density functional theory study on the structure, noncovalent interactions, and chemical reactivity of 1,5-benzodiazepin-2-ones derivatives. Int. J. Quantum Chem. 2019, 119, e26000. [Google Scholar] [CrossRef]
- Hajji, M.; Abad, N.; Habib, M.A.; Elmgirhi, S.M.H.; Guerfel, T. Computational chemistry methods for modelling non-covalent interactions and chemical reactivity—An overview. J. Indian Chem. Soc. 2021, 98, 100208. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Turner, M.J.; Thomas, S.P.; Shi, M.W.; Jayatilaka, D.; Spackman, M.A. Energy frameworks: Insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun. 2015, 51, 3735–3738. [Google Scholar] [CrossRef]
- Bakheit, A.H.; Abuelizz, H.A.; Al-Salahi, R. A DFT Study and Hirshfeld Surface Analysis of the Molecular Structures, Radical Scavenging Abilities and ADMET Properties of 2-Methylthio(methylsulfonyl)-[1,2,4]triazolo [1,5-a]quinazolines: Guidance for Antioxidant Drug Design. Crystals 2023, 13, 1086. [Google Scholar] [CrossRef]
- Bakheit, A.H.; Al-Salahi, R.; Ghabbour, H.A.; Ali, E.A.; AlRuqi, O.S.; Mostafa, G.A.E. Synthesis, X-ray Crystal Structure, and Computational Characterization of Tetraphenylborate, 3-(5H-Dibenzo[a,d] cyclohepten-5-ylidene)-N, N-Dimethyl-1-propanamine. Crystals 2023, 13, 1088. [Google Scholar] [CrossRef]
- Frisch, M.J.T.; Schlegel, G.W.; Scuseria, H.B.; Robb, G.E.; Cheeseman, M.A.; Scalmani, J.R.; Barone, G.; Mennucci, V.; Petersson, B.; Nakatsuji, G.A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2009; Volume 121, pp. 150–166. [Google Scholar]
- Dennington, R.; Keith, T.; Millam, J. GaussView 5.0; Gaussian Inc.: Wallingford, CT, USA, 2008; Volume 20. [Google Scholar]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar] [CrossRef]
- Shukla, A.; Khan, E.; Srivastava, K.; Sinha, K.; Tandon, P.; Vangala, V.R. Study of molecular interactions and chemical reactivity of the nitrofurantoin–3-aminobenzoic acid cocrystal using quantum chemical and spectroscopic (IR, Raman, 13 C SS-NMR) approaches. CrystEngComm 2017, 19, 3921–3930. [Google Scholar] [CrossRef]
- Bakheit, A.H.; Attwa, M.W.; Kadi, A.A.; Ghabbour, H.A.; Alkahtani, H.M. Exploring the Chemical Reactivity, Molecular Docking, Molecular Dynamic Simulation and ADMET Properties of a Tetrahydrothienopyridine Derivative Using Computational Methods. Crystals 2023, 13, 1020. [Google Scholar] [CrossRef]
- Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual density functional theory. Chem. Rev. 2003, 103, 1793–1874. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-B. Conceptual density functional theory and some recent developments. Acta Phys. Chim. Sin. 2009, 25, 590–600. [Google Scholar]
- Abuelizz, H.A.; Bakheit, A.H.; Marzouk, M.; Abdellatif, M.M.; Al-Salahi, R. Reactivity of 4, 5-Dichlorophthalic Anhydride towards Thiosemicarbazide and Amines: Synthesis, Spectroscopic Analysis, and DFT Study. Molecules 2022, 27, 3550. [Google Scholar] [CrossRef]
- Abuelizz, H.A.; Taie, H.A.A.; Bakheit, A.H.; Marzouk, M.; Abdellatif, M.M.; Al-Salahi, R. Biological Evaluation of 4-(1H-triazol-1-yl)benzoic Acid Hybrids as Antioxidant Agents: In Vitro Screening and DFT Study. Appl. Sci. 2021, 11, 11642. [Google Scholar] [CrossRef]
- Chamorro, E.; Pérez, P.; Domingo, L.R. On the nature of Parr functions to predict the most reactive sites along organic polar reactions. Chem. Phys. Lett. 2013, 582, 141–143. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. Cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef]
- Jeffrey, G.A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, NY, USA, 1997; Volume 12. [Google Scholar]
- Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm 2004, 6, 130–158. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef]
- Abad, N.; Sallam, H.H.; Al-Ostoot, F.H.; Khamees, H.A.; Al-horaibi, S.A.; Khanum, S.A.; Madegowda, M.; El Hafi, M.; Mague, J.T.; Essassi, E.M. Synthesis, crystal structure, DFT calculations, Hirshfeld surface analysis, energy frameworks, molecular dynamics and docking studies of novel isoxazolequinoxaline derivative (IZQ) as anti-cancer drug. J. Mol. Struct. 2021, 1232, 130004. [Google Scholar] [CrossRef]
- Edwards, A.J.; Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Intermolecular interactions in molecular crystals: What’s in a name? Faraday Discuss. 2017, 203, 93–112. [Google Scholar] [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; He, X.; Rong, C.; Zhong, A.; Liu, S.; Zhao, D. On the origin and nature of internal methyl rotation barriers: An information-theoretic approach study. Theor. Chem. Acc. 2022, 141, 68. [Google Scholar] [CrossRef]
- Zhong, A.; Chen, D.; Li, R. Revisiting the beryllium bonding interactions from energetic and wavefunction perspectives. Chem. Phys. Lett. 2015, 633, 265–272. [Google Scholar] [CrossRef]
- Tan, S.L.; Jotani, M.M.; Tiekink, E.R. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. Sect. E Crystallogr. Commun. 2019, 75, 308–318. [Google Scholar] [CrossRef]
- Sreenatha, N.; Chakravarthy, A.J.; Suchithra, B.; Lakshminarayana, B.; Hariprasad, S.; Ganesha, D. Crystal, spectral characterization, molecular docking, Hirshfeld computational studies and 3D-energy framework analysis of a novel puckered compound (C14H15Cl O): 2-Chloro-3-phenyl-5, 5-dimethylcyclohex-2-en-1-one. J. Mol. Struct. 2020, 1210, 127979. [Google Scholar] [CrossRef]
- Guo, Z.A.; Xian, J.Y.; Rong, L.R.; Qin, H.; Jie, Z. Theoretical study of metal ion impact on geometric and electronic properties of terbutaline compounds. Monatshefte Für Chem. Chem. Mon. 2019, 150, 1355–1364. [Google Scholar] [CrossRef]
- Sreenatha, N.; Chakravarthy, A.J.; Lakshminarayana, B.; Hariprasad, S. Structural characterization, computational, charge density studies of 2-chloro-3-(2′-methoxy)-5, 5-dimethyl-2-cyclohexenone. J. Mol. Struct. 2021, 1225, 129116. [Google Scholar] [CrossRef]
- Ghabbour, H.A.; Bakheit, A.H.; Ezzeldin, E.; Mostafa, G.A.E. Synthesis Characterization and X-ray Structure of 2-(2,6-Dichlorophenylamino)-2-imidazoline Tetraphenylborate: Computational Study. Appl. Sci. 2022, 12, 3568. [Google Scholar] [CrossRef]
- Bakheit, A.H.; Ghabbour, H.A.; Hussain, H.; Al-Salahi, R.; Ali, E.A.; Mostafa, G.A.E. Synthesis and Computational and X-ray Structure of 2, 3, 5-Triphenyl Tetrazolium, 5-Ethyl-5-phenylbarbituric Acid Salt. Crystals 2022, 12, 1706. [Google Scholar] [CrossRef]
- Gonthier, J.F.; Steinmann, S.N.; Roch, L.; Ruggi, A.; Luisier, N.; Severin, K.; Corminboeuf, C. π-Depletion as a criterion to predict π-stacking ability. Chem. Commun. 2012, 48, 9239–9241. [Google Scholar] [CrossRef] [PubMed]
- Wiberg, K.B.; Bader, R.F.; Lau, C.D. Theoretical analysis of hydrocarbon properties. 2. Additivity of group properties and the origin of strain energy. J. Am. Chem. Soc. 1987, 109, 1001–1012. [Google Scholar] [CrossRef]
- Mostafa, G.A.E.; Bakheit, A.; AlMasoud, N.; AlRabiah, H. Charge Transfer Complexes of Ketotifen with 2,3-Dichloro-5,6-dicyano-p-benzoquinone and 7,7,8,8-Tetracyanoquodimethane: Spectroscopic Characterization Studies. Molecules 2021, 26, 2039. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. Molecular electrostatic potentials and chemical reactivity. Rev. Comput. Chem. 1991, 2, 273–312. [Google Scholar]
- Politzer, P.; Laurence, P.R.; Jayasuriya, K. Molecular electrostatic potentials: An effective tool for the elucidation of biochemical phenomena. Environ. Health Perspect. 1985, 61, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Scrocco, E.; Tomasi, J. Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials. Adv. Quantum Chem. 1978, 11, 115–193. [Google Scholar]
- Mostafa, G.A.E.; Bakheit, A.H.; Al-Agamy, M.H.; Al-Salahi, R.; Ali, E.A.; Alrabiah, H. Synthesis of 4-Amino-N-[2(diethylamino)Ethyl]Benzamide Tetraphenylborate Ion-Associate Complex: Characterization, Antibacterial and Computational Study. Molecules 2023, 28, 2256. [Google Scholar] [CrossRef]
- Bakheit, A.H.; Al-Salahi, R.; Al-Majed, A.A. Thermodynamic and Computational (DFT) Study of Non-Covalent Interaction Mechanisms of Charge Transfer Complex of Linagliptin with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and Chloranilic acid (CHA). Molecules 2022, 27, 6320. [Google Scholar] [CrossRef]
- Abuelizz, H.A.; Taie, H.A.A.; Bakheit, A.H.; Mostafa, G.A.E.; Marzouk, M.; Rashid, H.; Al-Salahi, R. Investigation of 4-Hydrazinobenzoic Acid Derivatives for Their Antioxidant Activity: In Vitro Screening and DFT Study. ACS Omega 2021, 6, 31993–32004. [Google Scholar] [CrossRef]
Number | Atom1 | Atom2 | Length | Length-VdW | Rv | Symm. op. 1 a | Symm. op. 2 b |
---|---|---|---|---|---|---|---|
1 | O1 | H1 | 2.454 | −0.266 | 9.78 | x, y, z | x, y, −1 + z |
2 | H16B | Cl1 | 2.936 | −0.014 | 0.47 | x, y, z | −x, −1 + y, −z |
3 | C10 | H5 | 2.881 | −0.019 | 0.66 | x, y, z | 1/2 − x, −1/2 + y, −z |
4 | C12 | N1 | 3.184 | −0.066 | 2.03 | x, y, z | 1/2 − x, −1/2 + y, −z |
5 | H12 | N1 | 2.43 | −0.32 | 11.64 | x, y, z | 1/2 − x, −1/2 + y, −z |
Atom–Atom | Length/Å | Atom–Atom | Length/Å | ||||
---|---|---|---|---|---|---|---|
SCXRD | DFT | |SCXRD-DFT| | SCXRD | DFT | |SCXRD-DFT| | ||
Br1–C10 | 1.869(5) | 1.869 | 0.0007 | C13–C18 | 1.510(6) | 1.51 | 0.0003 |
C1–C2 | 1.378(8) | 1.378 | 0.001 | C13–O3 | 1.466(6) | 1.466 | 0.0008 |
C1–C6 | 1.397(7) | 1.397 | 1 × 10−4 | C14–C15 | 1.509(7) | 1.509 | 0 |
C2–C3 | 1.363(8) | 1.363 | 0 | C15–C16 | 1.530(8) | 1.53 | 0.0011 |
C3–C4 | 1.378(8) | 1.378 | 0.0009 | C15–C22 | 1.515(9) | 1.515 | 0.0005 |
C4–C5 | 1.362(7) | 1.362 | 0.0009 | C16–C17 | 1.518(9) | 1.518 | 0.0012 |
C5–C6 | 1.389(7) | 1.389 | 0.0004 | C17–C18 | 1.526(7) | 1.526 | 1 × 10−4 |
C6–C7 | 1.486(7) | 1.486 | 0.0002 | C18–C19 | 1.548(7) | 1.548 | 1 × 10−4 |
C7–N1 | 1.315(5) | 1.315 | 0.0002 | C19–C20 | 1.517(8) | 1.517 | 0.0002 |
C7–N3 | 1.336(6) | 1.336 | 0.0003 | C19–C21 | 1.527(7) | 1.527 | 0.0003 |
C8–N2 | 1.310(6) | 1.31 | 1 × 10−4 | C23–C24 | 1.464(7) | 1.464 | 1 × 10−4 |
C8–N3 | 1.382(6) | 1.382 | 0.0003 | C23–N4 | 1.261(6) | 1.261 | 0.0006 |
C8–S1 | 1.743(5) | 1.743 | 0.0003 | C24–C25 | 1.339(8) | 1.339 | 0.0004 |
C9–C10 | 1.329(6) | 1.329 | 0.0004 | C24–C29 | 1.369(8) | 1.369 | 1 × 10−4 |
C9–C12 | 1.516(6) | 1.516 | 0.0006 | C25–C26 | 1.397(8) | 1.397 | 0.0005 |
C9–S1 | 1.735(5) | 1.735 | 0.0004 | C26–C27 | 1.348(9) | 1.348 | 0.0007 |
C10–C11 | 1.478(7) | 1.478 | 0.0002 | C27–C28 | 1.338(10) | 1.338 | 0.0013 |
C11–O1 | 1.184(6) | 1.184 | 1 × 10−4 | C27–Cl1 | 1.719(6) | 1.719 | 0.0006 |
C11–O2 | 1.370(6) | 1.37 | 0.0002 | C28–C29 | 1.388(8) | 1.388 | 0.0012 |
C12–O2 | 1.439(6) | 1.439 | 1 × 10−4 | N1–N2 | 1.374(5) | 1.374 | 0.0012 |
C12–O3 | 1.375(5) | 1.375 | 0.0003 | N3–N4 | 1.415(5) | 1.415 | 0 |
C13–C14 | 1.514(7) | 1.514 | 0.0008 | 0.00046 |
A1–A2–A3 | Angle/° | A1–A2–A3 | Angle/° | ||||
---|---|---|---|---|---|---|---|
SCXRD | DFT | |SCXRD-DFT| | SCXRD | DFT | |SCXRD-DFT| | ||
C2–C1–C6 | 119.6(5) | 119.6 | 0.0075 | C14–C15–C22 | 112.9(6) | 112.9 | 0.053 |
C3–C2–C1 | 121.2(6) | 121.2 | 0.0021 | C22–C15–C16 | 111.8(5) | 111.8 | 0.0004 |
C2–C3–C4 | 119.0(6) | 119 | 0.0086 | C17–C16–C15 | 111.3(5) | 111.3 | 0.0005 |
C5–C4–C3 | 121.3(6) | 121.3 | 0.0019 | C16–C17–C18 | 112.1(5) | 112.1 | 0.0158 |
C4–C5–C6 | 120.0(5) | 120 | 0.0218 | C13–C18–C17 | 107.9(4) | 107.9 | 0.0135 |
C1–C6–C7 | 120.8(4) | 120.8 | 0.0278 | C13–C18–C19 | 113.6(4) | 113.6 | 0.0003 |
C5–C6–C1 | 118.9(5) | 118.9 | 0.0247 | C17–C18–C19 | 114.7(4) | 114.7 | 0.0156 |
C5–C6–C7 | 120.2(4) | 120.2 | 0.0015 | C20–C19–C18 | 114.1(5) | 114.1 | 0.0354 |
N1–C7–C6 | 123.7(4) | 123.7 | 0.0039 | C20–C19–C21 | 111.8(5) | 111.8 | 0.0051 |
N1–C7–N3 | 110.6(5) | 110.6 | 0.0241 | C21–C19–C18 | 112.1(5) | 112.1 | 1.9646 |
N3–C7–C6 | 125.7(4) | 125.7 | 0.0272 | N4–C23–C24 | 120.4(5) | 120.4 | 0.0036 |
N2–C8–N3 | 109.9(4) | 109.9 | 0.0531 | C25–C24–C23 | 121.7(5) | 121.7 | 0.0051 |
N2–C8–S1 | 126.0(4) | 126 | 0.0063 | C25–C24–C29 | 119.3(5) | 119.3 | 0.0219 |
N3–C8–S1 | 124.0(4) | 124 | 0.0223 | C29–C24–C23 | 119.0(6) | 119 | 0.0345 |
C10–C9–C12 | 108.6(4) | 108.6 | 0.0641 | C24–C25–C26 | 120.2(6) | 120.2 | 0.052 |
C10–C9–S1 | 137.2(4) | 137.2 | 0.0181 | C27–C26–C25 | 120.7(7) | 120.7 | 0.9739 |
C12–C9–S1 | 114.2(3) | 114.2 | 0.0544 | C26–C27–Cl1 | 120.5(6) | 120.5 | 0.0061 |
C9–C10–Br1 | 132.2(4) | 132.2 | 0.0043 | C28–C27–C26 | 118.6(6) | 118.6 | 0.0434 |
C9–C10–C11 | 109.4(4) | 109.4 | 0.0352 | C28–C27–Cl1 | 120.9(5) | 120.9 | 0.0369 |
C11–C10–Br1 | 118.3(4) | 118.3 | 0.0264 | C27–C28–C29 | 121.6(7) | 121.6 | 0.0151 |
O1–C11–C10 | 130.1(5) | 130.1 | 0.0156 | C24–C29–C28 | 119.4(7) | 119.4 | 0.0173 |
O1–C11–O2 | 122.4(5) | 122.4 | 0.0207 | C7–N1–N2 | 107.8(4) | 107.8 | 0.0185 |
O2–C11–C10 | 107.5(5) | 107.5 | 0.0274 | C8–N2–N1 | 106.8(4) | 106.8 | 0.0146 |
O2–C12–C9 | 104.2(3) | 104.2 | 0.0415 | C7–N3–C8 | 104.9(4) | 104.9 | 0.0364 |
O3–C12–C9 | 109.2(4) | 109.2 | 0.0538 | C7–N3–N4 | 127.6(4) | 127.6 | 0.0446 |
O3–C12–O2 | 111.3(4) | 111.3 | 0.0239 | C8–N3–N4 | 125.7(4) | 125.7 | 0.0351 |
C18–C13–C14 | 111.9(4) | 111.9 | 0.0428 | C23–N4–N3 | 115.1(4) | 115.1 | 0.043 |
O3–C13–C14 | 111.7(4) | 111.7 | 0.0257 | C11–O2–C12 | 110.2(4) | 110.2 | 0.0102 |
O3–C13–C18 | 106.9(4) | 106.9 | 0.0711 | C12–O3–C13 | 115.7(3) | 115.7 | 0.0212 |
C15–C14–C13 | 111.6(5) | 111.6 | 0.0034 | C9–S1–C8 | 103.3(2) | 103.3 | 0.0408 |
C14–C15–C16 | 108.7(5) | 108.7 | 0.0249 | 0.071549 |
No. | N | Symop | R | Electron Density | Eele | Epol | Edis | Erep | Etot | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | x, y, z | 13.40 | B3LYP/6-31G(d,p) | 0.9973 | −1.1749 | −23.3781 | 0.0000 | −20.1725 | |
2 | 2 | −x + 1/2, y + 1/2, −z | 9.02 | B3LYP/6-31G(d,p) | −30.5215 | −9.6167 | −43.1703 | 40.9923 | −51.6576 | |
3 | 2 | x, y, z | 8.87 | B3LYP/6-31G(d,p) | −5.7677 | −4.9333 | −59.4765 | 30.9113 | −42.4465 | |
4 | 2 | x, y, z | 10.04 | B3LYP/6-31G(d,p) | −17.2125 | −7.1891 | −32.3614 | 22.4292 | −37.8438 | |
5 | 2 | −x, y, −z | 12.73 | B3LYP/6-31G(d,p) | −7.8179 | −0.4275 | −13.4144 | 0.0000 | −20.2634 | |
6 | 2 | −x + 1/2, y + 1/2, −z | 11.94 | B3LYP/6-31G(d,p) | −11.5618 | −2.5711 | −21.0371 | 9.9290 | −26.3126 | |
7 | 1 | −x, y, −z | 13.92 | B3LYP/6-31G(d,p) | 3.0228 | −0.6213 | −11.2461 | 0.0000 | −7.0568 | |
8 | 1 | −x, y, −z | 9.12 | B3LYP/6-31G(d,p) | −5.7749 | −1.3866 | −55.3823 | 29.4028 | −37.1966 | |
9 | 1 | −x, y, −z | 13.21 | B3LYP/6-31G(d,p) | 0.3536 | −0.1993 | −9.5310 | 0.0000 | −8.0732 |
Vertical IP (eV) | Vertical EA (eV) | Mulliken Electronegativity (eV) | Chemical Potential (eV) | Hardness (eV) | Softness (eV−1) | Electrophilicity Index (eV) | Nucleophilicity Index (eV) |
---|---|---|---|---|---|---|---|
8.0899 | 0.9163 | 4.5031 | −4.5031 | 7.1737 | 0.1394 | 1.4134 | 0.8681 |
Atom | Atom | Atom | ||||||
---|---|---|---|---|---|---|---|---|
Br1 | 0.9805 | 0.0061 | H24 | 0 | −0.0006 | H47 | 0 | 0 |
C2 | 2.348 | 0.1731 | C25 | −0.0001 | 0.0012 | H48 | 0 | 0 |
H3 | −0.1033 | −0.009 | H26 | 0 | 0.0005 | C49 | −0.0868 | 8.5184 |
C4 | −1.4518 | −0.0231 | C27 | 0.0002 | 0.0029 | H50 | 0.0016 | −0.462 |
H5 | 0.0451 | 0.0006 | H28 | 0 | −0.0038 | C51 | 0.0177 | 0.2508 |
C6 | 5.3215 | 0.0529 | H29 | 0.0002 | 0.0002 | C52 | −0.0172 | 5.2379 |
H7 | −0.2216 | −0.0013 | C30 | 0.0061 | 0.0036 | H53 | −0.0019 | −0.2616 |
C8 | −1.7653 | 0.004 | H31 | −0.0003 | −0.0002 | C54 | 0.0085 | −2.859 |
H9 | 0.0542 | −0.0005 | H32 | −0.0001 | −0.0003 | H55 | −0.0003 | 0.1008 |
C10 | 2.6975 | 0.0162 | C33 | 0.0034 | −0.0016 | C56 | −0.0138 | 7.1603 |
H11 | −0.1199 | −0.0014 | H34 | 0.0001 | −0.013 | C57 | 0.0085 | −2.1977 |
C12 | 2.2075 | −0.0201 | C35 | 0.0377 | 0.0804 | H58 | −0.0003 | 0.0697 |
C13 | 3.0258 | 0.3281 | H36 | −0.023 | 0.0701 | C59 | −0.0138 | 3.7211 |
C14 | 3.9115 | 0.4641 | C37 | 0.0005 | −0.0017 | H60 | 0.0006 | −0.188 |
C15 | −0.7243 | −0.0669 | H38 | 0.0002 | 0.0001 | Cl61 | −0.0013 | 0.105 |
C16 | 2.0171 | 0.186 | H39 | −0.0017 | 0.0001 | N62 | 3.8215 | 0.1136 |
C17 | −0.2322 | 0.0113 | H40 | 0.0003 | 0.0028 | N63 | 2.4328 | −0.0438 |
C18 | 0.0083 | 0.0086 | C41 | 0.001 | 0.028 | N64 | −1.1932 | −0.3109 |
H19 | −0.0139 | −0.0019 | H42 | 0.002 | 0.0127 | N65 | 0.0516 | 6.9202 |
C20 | −0.0087 | −0.0052 | H43 | 0 | 0.0318 | O66 | 0.3651 | 0.0385 |
H21 | 0.0005 | −0.0002 | H44 | 0.0002 | −0.0015 | O67 | 0.0522 | 0.0092 |
C22 | 0.002 | −0.0011 | C45 | 0 | 0.0003 | O68 | 0.0249 | 0.0089 |
H23 | −0.0001 | −0.0026 | H46 | 0 | 0.0001 | S69 | 3.7494 | −0.0499 |
Ring | Shannon Aromaticity | Curvature of Electron Density | HOMA | Bird Aromaticity Index | LOLIPOP Index |
---|---|---|---|---|---|
A | ≈0 | 0.003 | 0.989 | 96.93 | 0.780 |
B | ≈0 | 0.008 | 0.989 | 96.16 | 2.019 |
C | 0.004 | 0.004 | 0.866 | 72.65 | 0.159 |
D | 0.006 | 0.005 | −1.715 | 21.11 | 0.085 |
E | ≈0 | −0.014 | −4.285 | 97.46 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakheit, A.H.; Attwa, M.W.; Kadi, A.A.; Alkahtani, H.M. Structural Analysis and Reactivity Insights of (E)-Bromo-4-((4-((1-(4-chlorophenyl)ethylidene)amino)-5-phenyl-4H-1,2,4-triazol-3-yl)thio)-5-((2-isopropylcyclohexyl)oxy) Furan-2(5H)-one: A Combined Approach Using Single-Crystal X-ray Diffraction, Hirshfeld Surface Analysis, and Conceptual Density Functional Theory. Crystals 2023, 13, 1313. https://doi.org/10.3390/cryst13091313
Bakheit AH, Attwa MW, Kadi AA, Alkahtani HM. Structural Analysis and Reactivity Insights of (E)-Bromo-4-((4-((1-(4-chlorophenyl)ethylidene)amino)-5-phenyl-4H-1,2,4-triazol-3-yl)thio)-5-((2-isopropylcyclohexyl)oxy) Furan-2(5H)-one: A Combined Approach Using Single-Crystal X-ray Diffraction, Hirshfeld Surface Analysis, and Conceptual Density Functional Theory. Crystals. 2023; 13(9):1313. https://doi.org/10.3390/cryst13091313
Chicago/Turabian StyleBakheit, Ahmed H., Mohamed W. Attwa, Adnan A. Kadi, and Hamad M. Alkahtani. 2023. "Structural Analysis and Reactivity Insights of (E)-Bromo-4-((4-((1-(4-chlorophenyl)ethylidene)amino)-5-phenyl-4H-1,2,4-triazol-3-yl)thio)-5-((2-isopropylcyclohexyl)oxy) Furan-2(5H)-one: A Combined Approach Using Single-Crystal X-ray Diffraction, Hirshfeld Surface Analysis, and Conceptual Density Functional Theory" Crystals 13, no. 9: 1313. https://doi.org/10.3390/cryst13091313
APA StyleBakheit, A. H., Attwa, M. W., Kadi, A. A., & Alkahtani, H. M. (2023). Structural Analysis and Reactivity Insights of (E)-Bromo-4-((4-((1-(4-chlorophenyl)ethylidene)amino)-5-phenyl-4H-1,2,4-triazol-3-yl)thio)-5-((2-isopropylcyclohexyl)oxy) Furan-2(5H)-one: A Combined Approach Using Single-Crystal X-ray Diffraction, Hirshfeld Surface Analysis, and Conceptual Density Functional Theory. Crystals, 13(9), 1313. https://doi.org/10.3390/cryst13091313