First-Principles Study on the Mechanical Properties of Gd-Doped BCZT Ceramics
Abstract
:1. Introduction
2. Computational Details
3. Result and Discussion
3.1. Structural Stability
3.2. Elastic Constants
3.3. Elastic Modulus
3.4. Elastic Anisotropy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, X.; Wu, J.; Yu, Y.; Chu, Z.; Shi, H.; Dong, S. Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting. Adv. Funct. Mater. 2018, 28, 1706895. [Google Scholar] [CrossRef]
- Yan, X.; Zheng, M.; Hou, Y.; Zhu, M. Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic. J. Eur. Ceram. Soc. 2017, 37, 2583–2589. [Google Scholar] [CrossRef]
- Seo, I.; Jo, S.; Kim, D.S.; Kang, H.-W.; Nahm, S.; Han, S.H. Fabrication and characterization of low temperature sintered hard piezoelectric ceramics for multilayer piezoelectric energy harvesters. Ceram. Int. 2021, 47, 16688–16695. [Google Scholar] [CrossRef]
- Kang, W.-S.; Koh, J.-H. (1−x)Bi0.5Na0.5TiO3–xBaTiO3 lead-free piezoelectric ceramics for energy-harvesting applications. J. Eur. Ceram. Soc. 2015, 35, 2057–2064. [Google Scholar] [CrossRef]
- Dungan, R.H.; Storz, L.J. Relation between chemical, mechanical, and electrical properties of Nb2O5-modified 95 Mol% PbZrO3-5 mol% PbTiO3. J. Am. Ceram. Soc. 1985, 68, 530–533. [Google Scholar] [CrossRef]
- Pohanka, R.C.; Freiman, S.W.; Rice, R.W. Fracture processes in ferroicmaterials. Ferroelectrics 1980, 28, 337–342. [Google Scholar] [CrossRef]
- Freiman, S.; Chuck, L.; Mecholsky, J.; Shelleman, D.; Storz, L. Fracture mechanisms in lead zirconate titanate ceramics. Fract. Mech. Ceram. 1986, 8, 175–185. [Google Scholar]
- Mehta, K.; Virkar, A.V. Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate (Zr:Ti = 0.54:0.46) ceramics. J. Am. Ceram. Soc. 1990, 73, 567–574. [Google Scholar] [CrossRef]
- Guan, D.; Xu, H.; Zhang, Q.; Huang, Y.C.; Shi, C.; Chang, Y.C.; Xu, X.; Tang, J.; Gu, Y.; Pao, C.W.; et al. Identifying a universal activity descriptor and a unifying mechanism concept on perovskite oxides for green hydrogen production. Adv. Mater. 2023, 36, 2305074. [Google Scholar] [CrossRef]
- Guan, D.; Zhong, J.; Xu, H.; Huang, Y.C.; Hu, Z.; Chen, B.; Shao, Z. A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Appl. Phys. Rev. 2022, 9, 1. [Google Scholar]
- Wu, J. Perovskite lead-free piezoelectric ceramics. J. Appl. Phys. 2020, 127, 19. [Google Scholar]
- Zhang, P.; Zhang, W.; Deng, L.; Zhang, H. A triboelectric nanogenerator based on temperature-stable high dielectric BaTiO3-based ceramic powder for energy harvesting. Nano Energy 2021, 87, 106176. [Google Scholar]
- Zhu, C.; Cai, Z.; Cao, X.; Fu, Z.; Li, L.; Wang, X. High-dielectric-constant nanograin BaTiO3-based ceramics for ultra-thin layer multilayer ceramic capacitors via grain grading engineering. Adv. Powder Mater. 2022, 1, 100029. [Google Scholar]
- Muhammad, R.; Ali, A.; Camargo, J.; Castro, M.S.; Lei, W.; Song, K.; Wang, D. Enhanced thermal stability in dielectric properties of NaNbO3–modified BaTiO3–BiMg1/2Ti1/2O3 ceramics for X9R-MLCC applications. Crystals 2022, 12, 141. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, J.; Guo, J.; Cheng, Z.; Wang, J.; Liu, H.; Zhang, S. Excellent thermal stability and aging behaviors in BiFeO3-BaTiO3 piezoelectric ceramics with rhombohedral phase. J. Am. Ceram. Soc. 2020, 103, 374–381. [Google Scholar] [CrossRef]
- Wang, J.; Lu, Z.-L.; Huang, Y.-F.; Zhou, L.-L.; Xing, Z.-G.; Wang, H.-D.; Li, Z. The mechanism for the enhanced mechanical and piezoelectricity properties of La2O3 doped BaTiO3 ceramic coatings prepared by plasma spray. J. Alloys Compd. 2022, 897, 162944. [Google Scholar] [CrossRef]
- Chen, L.; Li, F.; Gao, B.; Zhou, C.; Wu, J.; Deng, S.; Liu, H.; Qi, H.; Chen, J. Excellent energy storage and mechanical performance in heterostructure BaTiO3-based relaxors. Chem. Eng. J. 2023, 452, 139222. [Google Scholar]
- Assali, A.; Kanouni, F.; Laidoudi, F.; Arab, F.; Bouslama, M.h. Structural and Electromechanical Properties of Sr-Substituted Barium Titanate (BST) as Potential Material for High Performance Electroacoustic Devices. Mater. Today Commun. 2020, 25, 101643. [Google Scholar]
- Liu, W.; Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 2009, 103, 257602. [Google Scholar] [CrossRef]
- Praveen, J.P.; Monaji, V.R.; Chandrakala, E.; Indla, S.; Subramanian, V.; Das, D. Enhanced magnetoelectric coupling in Ti and Ce substituted lead free CFO-BCZT laminate composites. J. Alloys Compd. 2018, 750, 392–400. [Google Scholar] [CrossRef]
- Chao, X.; Wang, Z.; Tian, Y.; Zhou, Y.; Yang, Z. Ba(Cu0.5W0.5)O3-induced sinterability, electrical and mechanical properties of (Ba0. 85Ca0.15Ti0.90Zr0.10)O3 ceramics sintered at low temperature. Mater. Res. Bull. 2015, 66, 16–25. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, F.; Qu, J.; Qi, T. Enhanced mechanical and piezoelectric properties of BCZT-CuY/rGO-based nanogenerator for tiny energy harvesting. Mater. Lett. 2018, 231, 20–23. [Google Scholar] [CrossRef]
- Segall, M.; Lindan, P.J.; Probert, M.A.; Pickard, C.J.; Hasnip, P.J.; Clark, S.; Payne, M. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 2002, 14, 2717. [Google Scholar] [CrossRef]
- Wang, Y.; Fullon, R.; Acerce, M.; Petoukhoff, C.E.; Yang, J.; Chen, C.; Du, S.; Lai, S.K.; Lau, S.P.; Voiry, D. Solution-processed MoS2/organolead trihalide perovskite photodetectors. Adv. Mater. 2017, 29, 1603995. [Google Scholar] [CrossRef]
- Rizwan, M.; Shahid, A.; Mahmood, T.; Zafar, A.A.; Aslam, I.; Adnan, N.; Hussain, T.; Jin, H.; Cao, C. Effect of magnesium on structural and optical properties of CaTiO3: A DFT study. Phys. B 2019, 568, 88–91. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef]
- Hua, G.; Li, D. A first-principles study on the mechanical and thermodynamic properties of (Nb1−xTix)C complex carbides based on virtual crystal approximation. RSC Adv. 2015, 5, 103686–103694. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, M.; You, Y.; Chen, H.; Zhang, F.; Bai, B.; Chen, L.; Long, Z.; Li, R. Stability and properties of alloyed ε-(Fe1−xMx)3N nitrides (M = Cr, Ni, Mo, V, Co, Nb, Mn, Ti and Cu): A first-principles calculations. J. Alloys Compd. 2014, 615, 854–862. [Google Scholar] [CrossRef]
- Yu, C.-J.; Emmerich, H. An efficient virtual crystal approximation that can be used to treat heterovalent atoms, applied to (1−x) BiScO3–xPbTiO3. J. Phys. Condens. Matter. 2007, 19, 306203. [Google Scholar] [CrossRef]
- Pan, Y.; Pu, D.; Liu, G.; Wang, P. Influence of alloying elements on the structural stability, elastic, hardness and thermodynamic properties of Mo5SiB2 from first-principles calculations. Ceram. Int. 2020, 46, 16605–16611. [Google Scholar] [CrossRef]
- Peng, G.-W.; Gan, X.-P.; Li, Z.; Zhou, K.-C. First-principles study of the (CuxNi1−x)3 Sn precipitations with different structures in Cu–Ni–Sn alloys. Chin. Phys. B 2018, 27, 086302. [Google Scholar] [CrossRef]
- Jafari, A.; Davatolhagh, S.; Dehghan, A. Half-metallic p0-d half-Heusler alloys with stable structure in ferromagnetic state. J. Phys. Chem. Solids 2022, 166, 110702. [Google Scholar] [CrossRef]
- Born, M.; Huang, K.; Lax, M. Dynamical theory of crystal lattices. Am. J. Phys. 1955, 23, 474. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Hossain, K.M.; Mitro, S.; Rasheduzzaman, M.; Modak, J.K.; Rayhan, M. Structural, mechanical, electronic, and anisotropic properties of niobium-doped strontium ferrite: First-principle calculations. Appl. Phys. A 2021, 127, 36. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik, 1st ed.; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1928; pp. 560–800. [Google Scholar]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Mir, S.A.; Gupta, D.C. Structural and mechanical stabilities, electronic, magnetic and thermophysical properties of double perovskite Ba2LaNbO6: Probed by DFT computation. Int. J. Energy Res. 2021, 45, 14603–14611. [Google Scholar] [CrossRef]
- Naher, M.I.; Naqib, S.H. Structural, elastic, electronic, bonding, and optical properties of topological CaSn3 semimetal. J. Alloys Compd. 2020, 829, 154509. [Google Scholar] [CrossRef]
- Sailaja, P.; Pavan Kumar, N.; Shara Sowmya, N.; James, A.R.; Kumar, A.; Arockiakumar, R.; Srinivas, A. Investigation of ferroelectric, piezoelectric and mechanically coupled properties of lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. Adv. Appl. Ceram. 2019, 118, 300–307. [Google Scholar] [CrossRef]
- Sun, Z.; Music, D.; Ahuja, R.; Schneider, J.M. Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides. Phys. Rev. B 2005, 71, 193402. [Google Scholar] [CrossRef]
- Ozyar, U.; Deligoz, E.; Colakoglu, K. Systematic study on the anisotropic elastic properties of tetragonal XYSb (X = Ti, Zr, Hf; Y = Si, Ge) compounds. Solid State Sci. 2015, 40, 92–100. [Google Scholar] [CrossRef]
- Ranganathan, S.I.; Ostoja-Starzewski, M. Universal elastic anisotropy index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef]
- Zeng, M.-X.; Wang, R.-N.; Tang, B.-Y.; Peng, L.-M.; Ding, W.-J. Elastic and electronic properties of tI26-type Mg12RE (RE = Ce, Pr and Nd) phases. Modell. Simul. Mater. Sci. Eng. 2012, 20, 035018. [Google Scholar] [CrossRef]
- Bao, W.; Liu, D.; Li, P.; Duan, Y. Structural properties, elastic anisotropies and thermal conductivities of tetragonal LnB2C2 (Ln = Rare Earth) compounds from first-principles calculations. Ceram. Int. 2019, 45, 1857–1867. [Google Scholar] [CrossRef]
- Duan, Y.; Sun, Y.; Peng, M. First-principles investigations on Pb–Ba intermetallic compounds. Comput. Mater. Sci. 2014, 92, 258–266. [Google Scholar] [CrossRef]
- Pu, Y.; Qiu, Z.; Lv, B.; Fang, C.; Lou, Y.; Wang, W.; Dai, Q. The first-principle study on certain structural, band-structural, elastic, optical and piezoelectric properties of the Ca, Zr and Ca/Zr-doped BaTiO3. Mod. Phys. Lett. B 2023, 37, 2350007. [Google Scholar] [CrossRef]
x | Sites | ||||||
---|---|---|---|---|---|---|---|
0 | 279.21 | 95.45 | 73.99 | 117.77 | 109.14 | 116.13 | |
0.01 | A site | 287.35 | 98.56 | 98.62 | 288.40 | 109.52 | 109.51 |
B site | 279.07 | 97.07 | 79.19 | 108.07 | 105.34 | 114.03 | |
0.02 | A site | 289.31 | 98.67 | 98.67 | 286.85 | 104.81 | 104.85 |
B site | 287.25 | 98.55 | 97.14 | 262.06 | 110.73 | 110.63 | |
0.03 | A site | 293.64 | 99.09 | 99.02 | 284.53 | 102.32 | 102.36 |
B site | 290.45 | 99.68 | 99.81 | 293.01 | 109.89 | 110.04 | |
0.04 | A site | 297.80 | 98.48 | 98.49 | 298.75 | 99.70 | 99.76 |
B site | 290.13 | 98.81 | 98.85 | 292.20 | 110.25 | 110.23 | |
0.05 | A site | 305.19 | 99.31 | 99.38 | 304.19 | 97.15 | 97.13 |
B site | 292.72 | 97.83 | 97.85 | 292.33 | 110.78 | 110.75 |
x | Sites | B | G | G/B | Y | ν | ||
---|---|---|---|---|---|---|---|---|
0 | 116.16 | 89.02 | 0.77 | 212.73 | 0.19 | 1.06 | 18.11 | |
0.01 | A site | 151.09 | 104.77 | 0.69 | 255.29 | 0.22 | 1.38 | 19.67 |
B site | 115.79 | 83.81 | 0.72 | 202.56 | 0.21 | 1.10 | 16.29 | |
0.02 | A site | 151.49 | 102.16 | 0.67 | 250.23 | 0.22 | 1.45 | 18.75 |
B site | 148.79 | 103.52 | 0.70 | 252.10 | 0.22 | 1.34 | 19.49 | |
0.03 | A site | 152.58 | 101.02 | 0.66 | 248.27 | 0.23 | 1.49 | 18.26 |
B site | 152.87 | 105.55 | 0.69 | 257.40 | 0.22 | 1.39 | 19.75 | |
0.04 | A site | 153.90 | 101.14 | 0.66 | 248.89 | 0.23 | 1.54 | 18.17 |
B site | 152.09 | 105.83 | 0.70 | 257.71 | 0.22 | 1.38 | 19.93 | |
0.05 | A site | 156.47 | 100.69 | 0.64 | 248.72 | 0.24 | 1.61 | 17.78 |
B site | 151.95 | 106.75 | 0.70 | 259.49 | 0.22 | 1.37 | 20.25 |
x | Sites | ||||||
---|---|---|---|---|---|---|---|
0 | 279.21 | 95.45 | 73.99 | 117.77 | 109.14 | 116.13 | |
0.01 | A site | 0.0042 | −0.0011 | −0.0011 | 0.0042 | 0.0091 | 0.0091 |
B site | 0.0053 | −0.0006 | −0.0057 | 0.0318 | 0.0110 | 0.0091 | |
0.02 | A site | 0.0042 | −0.0011 | −0.0011 | 0.0042 | 0.0095 | 0.0095 |
B site | 0.0042 | −0.0011 | −0.0012 | 0.0047 | 0.0090 | 0.0090 | |
0.03 | A site | 0.0041 | −0.0010 | −0.0011 | 0.0043 | 0.0098 | 0.0098 |
B site | 0.0042 | −0.0011 | −0.0011 | 0.0041 | 0.0091 | 0.0091 | |
0.04 | A site | 0.0040 | −0.0010 | −0.0010 | 0.0040 | 0.0100 | 0.0100 |
B site | 0.0042 | −0.0011 | −0.0011 | 0.0091 | 0.0091 | 0.0091 | |
0.05 | A site | 0.0039 | −0.0010 | −0.0010 | 0.0103 | 0.0103 | 0.0103 |
B site | 0.0041 | −0.0010 | −0.0010 | 0.0090 | 0.0090 | 0.0090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, H.; Fang, K.; Guo, K.; Guo, S.; Tay, F.E.H. First-Principles Study on the Mechanical Properties of Gd-Doped BCZT Ceramics. Crystals 2023, 13, 1305. https://doi.org/10.3390/cryst13091305
Yue H, Fang K, Guo K, Guo S, Tay FEH. First-Principles Study on the Mechanical Properties of Gd-Doped BCZT Ceramics. Crystals. 2023; 13(9):1305. https://doi.org/10.3390/cryst13091305
Chicago/Turabian StyleYue, Haojie, Kailing Fang, Kun Guo, Shifeng Guo, and Francis Eng Hock Tay. 2023. "First-Principles Study on the Mechanical Properties of Gd-Doped BCZT Ceramics" Crystals 13, no. 9: 1305. https://doi.org/10.3390/cryst13091305
APA StyleYue, H., Fang, K., Guo, K., Guo, S., & Tay, F. E. H. (2023). First-Principles Study on the Mechanical Properties of Gd-Doped BCZT Ceramics. Crystals, 13(9), 1305. https://doi.org/10.3390/cryst13091305