Degradation Kinetics of Automotive Shredder Residue and Waste Automotive Glass for SiC Synthesis: An Energy-Efficient Approach
Abstract
1. Introduction
2. Experimental Method
2.1. Materials
2.2. Sample Preparation
2.3. Characterisation
2.4. Kinetic Study
2.5. Formation Mechanism of SiC
3. Results and Discussion
3.1. Characterisation of Heat-Treated Products
XRD Spectrums of Heat-Treated ASR and Waste Glass Mixture
3.2. Kinetics of Degradation
3.2.1. Non-Isothermal Condition
3.2.2. Isothermal Degradation
3.2.3. Temperature Dependence of Initial Linear Rate Constant
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aarnæs, T.S.; Tangstad, M.; Ringdalen, E. SiC formation and SiO reactivity of methane at high temperatures. Mater. Chem. Phys. 2022, 276, 125355. [Google Scholar] [CrossRef]
- Li, F.; Tangstad, M. Carbothermal reduction of quartz with carbon from natural gas. Met. Mater. Trans. B 2017, 48, 853–869. [Google Scholar] [CrossRef]
- Li, F.; Tangstad, M.; Ringdalen, E. Carbothermal reduction of quartz and carbon pellets at elevated temperatures. Met. Mater. Trans. B 2018, 49, 1078–1088. [Google Scholar] [CrossRef]
- Schei, A.; Tuset, J.K.; Tveit, H. Production of High Silicon Alloys; Tapir: Trondheim, Norway, 1998. [Google Scholar]
- Kumar, P.V.; Gupta, G.S. Study of formation of silicon carbide in the Acheson process. Steel Res. 2002, 73, 31–38. [Google Scholar] [CrossRef]
- Ramrakhiani, M. Nanostructures and their applications. Recent Res. Sci. Technol. 2012, 4, 14–19. [Google Scholar]
- Castelletto, S.; Johnson, B.C.; Boretti, A. Quantum effects in silicon carbide hold promise for novel integrated devices and sensors. Adv. Opt. Mater. 2013, 1, 609–625. [Google Scholar] [CrossRef]
- Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018. [Google Scholar] [CrossRef]
- Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016. [Google Scholar] [CrossRef]
- Phan, H.-P.; Dao, D.V.; Nakamura, K.; Dimitrijev, S.; Nguyen, N.-T. The piezoresistive effect of SiC for MEMS sensors at high temperatures: A review. J. Microelectromechanical Syst. 2015, 24, 1663–1677. [Google Scholar] [CrossRef]
- Ziegler, G.; Lanig, P.; Theis, D.; Weyrich, C. Single crystal growth of SiC substrate material for blue light emitting diodes. IEEE Trans. Electron Devices 1983, 30, 277–281. [Google Scholar] [CrossRef]
- Wright, N.G.; Horsfall, A.B.; Vassilevski, K. Prospects for SiC electronics and sensors. Mater. Today 2008, 11, 16–21. [Google Scholar] [CrossRef]
- Oliveros, A.; Guiseppi-Elie, A.; Saddow, S.E. Silicon carbide: A versatile material for biosensor applications. Biomed. Microdevices 2013, 15, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, F.; Kanzaki, S. Synthesis of Monodispersed Spherical β-Silicon Carbide Powder by a Sol-Gel Process. J. Am. Ceram. Soc. 1990, 73, 2107–2110. [Google Scholar] [CrossRef]
- Seog, I.-S.; Kim, C.H. Preparation of monodispersed spherical silicon carbide by the sol-gel method. J. Mater. Sci. 1993, 28, 3277–3282. [Google Scholar] [CrossRef]
- Qian, J.-M.; Wang, J.-P.; Qiao, G.-J.; Jin, Z.-H. Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing. J. Eur. Ceram. Soc. 2004, 24, 3251–3259. [Google Scholar] [CrossRef]
- Guo, J.; Zuo, Y.; Li, Z.; Gao, W.; Zhang, J. Nanostructures. Preparation of SiC nanowires with fins by chemical vapor deposition. Phys. E Low-Dimens. Syst. Nanostructures 2007, 39, 262–266. [Google Scholar] [CrossRef]
- Henderson, E.J.; Veinot, J.G. From phenylsiloxane polymer composition to size-controlled silicon carbide nanocrystals. J. Am. Chem. Soc. 2009, 131, 809–815. [Google Scholar] [CrossRef]
- Zhu, C.; Zhao, G.; Revankar, V.; Hlavacek, V. Synthesis of ultra-fine SiC powders in a dc plasma reactor. J. Mater. Sci. 1993, 28, 659–668. [Google Scholar] [CrossRef]
- Guo, J.; Gitzhofer, F.; Boulos, M.I. Induction plasma synthesis of ultrafine SiC powders from silicon and CH4. J. Mater. Sci. 1995, 30, 5589–5599. [Google Scholar] [CrossRef]
- Ramesh, P.; Vaidhyanathan, B.; Ganguli, M.; Rao, K.J. Synthesis of β-SiC powder by use of microwave radiation. J. Mater. Res. 1994, 9, 3025–3027. [Google Scholar] [CrossRef]
- Farzana, R.; Sahajwalla, V. Novel recycling to transform automotive waste glass and plastics into SiC-bearing resource by silica reduction. J. Sustain. Metall. 2015, 1, 65–74. [Google Scholar] [CrossRef]
- Rajarao, R.; Farzana, R.; Khanna, R.; Sahajwalla, V. Synthesis of SiC/Si3N4 nanocomposite by using automotive waste tyres as resource. J. Ind. Eng. Chem. 2015, 29, 35–38. [Google Scholar] [CrossRef]
- Mayyas, M.; Pahlevani, F.; Handoko, W.; Sahajwalla, V. Preliminary investigation on the thermal conversion of automotive shredder residue into value-added products: Graphitic carbon and nano-ceramics. Waste Manag. 2016, 50, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Maroufi, S.; Mayyas, M.; Sahajwalla, V. Waste materials conversion into mesoporous silicon carbide nanocermics: Nanofibre/particle mixture. J. Clean. Prod. 2017, 157, 213–221. [Google Scholar] [CrossRef]
- Hossain, R.; Sahajwalla, V. Molecular recycling: A key approach to tailor the waste recycling for high-value nano silicon carbide. J. Clean. Prod. 2021, 316, 128344. [Google Scholar] [CrossRef]
- Jody, B.; Daniels, E.; Duranceau, C.; Pomykala, J.; Spangenberger, J. End-of-Life Vehicle Recycling: State of the Art of Resource Recovery from Shredder Residue; Argonne National Lab (ANL): Argonne, IL, USA, 2011. [Google Scholar]
- GHK; Bio Intelligence Service. A Study to Examine the Benefits of the End of Life Vehicles Directive and the Costs and Benefits of a Revision of the 2015 Targets for Recycling, Re-Use and Recovery under the ELV Directive; DG Environment: Birmingham, AL, USA, 2006. [Google Scholar]
- Cossu, R.; Lai, T. Automotive shredder residue (ASR) management: An overview. Waste Manag. 2015, 45, 143–151. [Google Scholar] [CrossRef]
- Patierno, O.; Cipriani, P.; Pochetti, F.; Giona, M. Pyrolysis of automotive shredder residues: A lumped kinetic characterization. Chem. Eng. J. 1998, 70, 157–163. [Google Scholar] [CrossRef]
- Hemati, S.; Hossain, R.; Sahajwalla, V. Selective thermal transformation of automotive shredder residues into high-value nano silicon carbide. Nanomaterials 2021, 11, 2781. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Byeun, Y.-K.; Lee, S.-H.; Choi, S.-C. In situ growth of SiC nanowires by carbothermal reduction using a mixture of low-purity SiO2 and carbon. J. Alloys Compd. 2008, 456, 257–263. [Google Scholar] [CrossRef]
- Omoriyekomwan, J.E.; Tahmasebi, A.; Dou, J.; Tian, L.; Yu, J. Mechanistic study on the formation of silicon carbide nanowhiskers from biomass cellulose char under microwave. Mater. Chem. Phys. 2021, 262, 124288. [Google Scholar] [CrossRef]
- Mayyas, M.; Pahlevani, F.; Maroufi, S.; Liu, Z.; Sahajwalla, V. Waste conversion into high-value ceramics: Carbothermal nitridation synthesis of titanium nitride nanoparticles using automotive shredder waste. J. Environ. Manag. 2017, 188, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Wang, C. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents. Chin. J. Mater. Res. 2022, 36, 837–844. [Google Scholar]
- Xu, J.; Zuo, H.; Wang, G.; Zhang, J.; Guo, K.; Liang, W. Gasification mechanism and kinetics analysis of coke using distributed activation energy model (DAEM). Appl. Therm. Eng. 2019, 152, 605–614. [Google Scholar] [CrossRef]
- Yao, Z.; Yu, S.; Su, W.; Wu, W.; Tang, J.; Qi, W. Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods. Waste Manag. Res. 2020, 38, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Bi, L. Precision of the Coats and Redfern method for the determination of the activation energy without neglecting the low-temperature end of the temperature integral. Energy Fuels 2008, 22, 2172–2174. [Google Scholar] [CrossRef]
- Mayyas, M.; Mayyas, M.; Pahlevani, F.; Liu, Z.; Rajarao, R.; Sahajwalla, V. From automotive shredder residue to nano-ceramics and graphitic carbon—Thermal degradation kinetics. J. Anal. Appl. Pyrolysis 2016, 120, 60–74. [Google Scholar] [CrossRef]
- Abolpour, B.; Shamsoddini, R. Mechanism of reaction of silica and carbon for producing silicon carbide. Prog. React. Kinet. Mech. 2020, 45, 1468678319891416. [Google Scholar] [CrossRef]
- Crapse, J.; Pappireddi, N.; Gupta, M.; Shvartsman, S.Y.; Wieschaus, E.; Wühr, M. Evaluating the Arrhenius equation for developmental processes. Mol. Syst. Biol. 2021, 17, e9895. [Google Scholar] [CrossRef]
- Carroll, D.F.; Weimer, A.W.; Dunmead, S.D.; Eisman, G.A.; Hwang, J.H.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Conner, C.L. Carbothermally prepared nanophase SiC/Si3N4 composite powders and densified parts. AIChE J. 1997, 43, 2624–2635. [Google Scholar] [CrossRef]
- Viscomi, F.; Himmel, L. Kinetic and mechanistic study on the formation of silicon carbide from silica flour and coke breeze. JOM 1978, 30, 21–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, E.-W.; Chen, Z.-Z.; Li, X.-B.; Xiao, B. Large-scale fabrication of silicon carbide hollow spheres. J. Mater. Chem. 2006, 16, 4141–4145. [Google Scholar] [CrossRef]
- Han, S.; Jang, Y.-C.; Choi, Y.-S.; Choi, S.-K. Thermogravimetric kinetic study of automobile shredder residue (ASR) pyrolysis. Energies 2020, 13, 1451. [Google Scholar] [CrossRef]
- Krishnarao, R.V.; Godkhindi, M.M. Studies on the formation of SiC whiskers from pulverized rice husk ashes. Ceram. Int. 1992, 18, 35–42. [Google Scholar] [CrossRef]
- Choi, H.-J.; Lee, J.-G. Continuous synthesis of silicon carbide whiskers. J. Mater. Sci. 1995, 30, 1982–1986. [Google Scholar] [CrossRef]
- Laidler, K.J. The development of the Arrhenius equation. J. Chem. Educ. 1984, 61, 494. [Google Scholar] [CrossRef]
- Lee, J.G. Formation of silicon carbide from rice hulls. Am. Ceram. Soc. Bull. 1975, 54, 195–198. [Google Scholar]
- Weimer, A.W.; Nilsen, K.J.; Cochran, G.A.; Roach, R.P. Kinetics of carbothermal reduction synthesis of beta silicon carbide. AIChE J. 1993, 39, 493–503. [Google Scholar] [CrossRef]
- Blumenthal, J.L.; Santy, M.J.; Burns, E.A. Kinetic studies of high-temperature carbon-silica reactions in charred silica-reinforced phenolic resins. AIAA J. 1966, 4, 1053–1057. [Google Scholar] [CrossRef]
- Kuznetsova, V.; Dmitrenko, V.; Kokurin, A. Kinetics of formation of silicon carbide. Proc. Mendeleev Chem. Soc. 1980, 25, 118–119. [Google Scholar]
Condition | No. | Mathematical Model | G(x) | |
---|---|---|---|---|
Phase boundary/interfacial reaction controlled | 1 | P1 | Contracting area/cylinder | |
2 | P2 | Contracting volume/sphere | ||
Diffusion | 3 | D1 | 3D diffusion-Jander | |
4 | D2 | 3D diffusion-Ginstling–Brounshtein | ||
Reaction order | 5 | R1 | First order | |
6 | R2 | Second order | ||
Avrami-Erofeev/Nucleation | 7 | N1 | n = 2 | |
8 | N2 | n = 3 |
C | Si | O | Total |
---|---|---|---|
63.88 | 31.06 | 5.06 | 100.00 |
S. No. | Temperature (°C) | Average Activation Energy (kJ mol−1) | Method | Ref. |
---|---|---|---|---|
1 | 800 | 163.01 | Friedman | [45] |
156.45 | Kissinger–Akahira–Sunose | |||
159.22 | Flynn–Wall–Ozawa | |||
2 | 170–380 | 42.5 | Coats–Redfern n = 1 | [24] |
380–503 | 126.5 | Coats–Redfern n = 1 | ||
380–503 | 125.1 | Freeman and Carroll | ||
3 | 359 | 22.48 | ||
520 | 2.97 | Coats–Redfern n = 1 | Current work | |
717 | 6.6 |
Model | Temperature (°C) | |||||
---|---|---|---|---|---|---|
1300 | 1400 | 1500 | ||||
Linearised Equation | R2 | Linearised Equation | R2 | Linearised Equation | R2 | |
P1 | y = 9 × 10−5x + 0.0777 | 0.6963 | y = 2 × 10−4x + 0.0674 | 0.8727 | y = 2 × 10−4x + 0.1003 | 0.8644 |
P2 | y = 6 × 10−5x + 0.0526 | 0.7084 | y = 1 × 10−4x + 0.045 | 0.8853 | y = 2 × 10−4x + 0.0666 | 0.8865 |
D1 | y = 1 × 10−5x + 0.0033 | 0.9303 | y = 3 × 10−5x + 0.0003 | 0.9901 | y = 7 × 10−5x − 0.0005 | 0.9924 |
D2 | y = 1 × 10−5x + 0.0032 | 0.9196 | y = 2 × 10−5x + 0.0008 | 0.9862 | y = 6 × 10−5x + 0.002 | 0.9828 |
R1 | y = 2 × 10−4x + 0.1629 | 0.7323 | y = 4 × 10−4x + 0.1342 | 0.9084 | y = 7 × 10−4x + 0.1932 | 0.9256 |
R2 | y = 3 × 10−4x + 0.1782 | 0.8002 | y = 6 × 10−4x + 0.1223 | 0.9614 | y = 1.5 × 10−3x + 0.099 | 0.9927 |
N1 | y = 1 × 10−4x + 0.0815 | 0.7323 | y = 2 × 10−4x + 0.067 | 0.9084 | y = 4 × 10−4x + 0.0966 | 0.9256 |
N2 | y = 7 × 10−5x + 0.0543 | 0.7323 | y = 1 × 10−4x + 0.0447 | 0.9084 | y = 2 × 10−4x + 0.0644 | 0.9256 |
Materials | Temperature (°C) | Activation Energy (kJ mol−1) | Ref. |
---|---|---|---|
Coke breeze | 1400–1500 | 550 | [43] |
Charcoal | 1350–1450 | 544 | [49] |
Carbon black | 1575–200 | 382 | [50] |
Carbon black | 1300–1600 | 287 | [51] |
Carbon black | 1500–1800 | 251 | [52] |
Mixed ASR and waste glass | 1300–1500 | 225.9 | Current work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemati, S.; Biswal, S.; Pahlevani, F.; Udayakumar, S.; Sahajwalla, V. Degradation Kinetics of Automotive Shredder Residue and Waste Automotive Glass for SiC Synthesis: An Energy-Efficient Approach. Crystals 2023, 13, 1183. https://doi.org/10.3390/cryst13081183
Hemati S, Biswal S, Pahlevani F, Udayakumar S, Sahajwalla V. Degradation Kinetics of Automotive Shredder Residue and Waste Automotive Glass for SiC Synthesis: An Energy-Efficient Approach. Crystals. 2023; 13(8):1183. https://doi.org/10.3390/cryst13081183
Chicago/Turabian StyleHemati, Sepideh, Smitirupa Biswal, Farshid Pahlevani, Sanjith Udayakumar, and Veena Sahajwalla. 2023. "Degradation Kinetics of Automotive Shredder Residue and Waste Automotive Glass for SiC Synthesis: An Energy-Efficient Approach" Crystals 13, no. 8: 1183. https://doi.org/10.3390/cryst13081183
APA StyleHemati, S., Biswal, S., Pahlevani, F., Udayakumar, S., & Sahajwalla, V. (2023). Degradation Kinetics of Automotive Shredder Residue and Waste Automotive Glass for SiC Synthesis: An Energy-Efficient Approach. Crystals, 13(8), 1183. https://doi.org/10.3390/cryst13081183