Grain Refinement and Strengthening of an Aluminum Alloy Subjected to Severe Plastic Deformation through Equal-Channel Angular Pressing
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure and Mechanical Properties
3.2. Annealing Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wetscher, F.; Vorhauer, A.; Pippan, R. Strain hardening during high pressure torsion deformation. Mater. Sci. Eng. A 2005, 410–411, 213–216. [Google Scholar] [CrossRef]
- Kawasaki, M.; Han, J.K.; Lee, D.H.; Jang, J.; Langdon, T.G. Fabrication of nanocomposites through diffusion bonding under high-pressure torsion. J. Mater. Res. 2018, 33, 2700–2710. [Google Scholar] [CrossRef]
- Kunčická, L.; Jambor, M.; Král, P. High pressure torsion of copper; effect of processing temperature on structural features, microhardness and electric conductivity. Materials 2023, 16, 2738. [Google Scholar] [CrossRef]
- Charfeddine, S.; Zehani, K.; Bessais, L.; Korchef, A. Microstructure characterization of an aluminium alloy processed by milling followed by spark plasma sintering. Crys. Res. Technol. 2018, 53, 1700137. [Google Scholar] [CrossRef]
- Daniyan, I.A.; Tlhabadira, I.; Mpofu, K.; Adeodu, A.O. Process design and optimization for the milling operation of aluminum alloy (AA6063 T6). Mater. Today Proc. 2021, 38, 536–543. [Google Scholar] [CrossRef]
- Segal, V.M.; Reznikov, V.I.; Drobyshevskii, A.E.; Kopylov, V.I. Plastic metal working by simple shear. Izv. Akad. Nauk. SSSR Met. 1981, 1, 115–123. [Google Scholar] [CrossRef]
- Bednarczyk, W.; Wątroba, M.; Kawałko, J.; Bała, P. Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP. Mater. Sci. Eng. A 2019, 748, 357–366. [Google Scholar] [CrossRef]
- Volokitina, I.; Bychkov, A.; Volokitin, A.; Kolesnikov, A. Natural aging of aluminum alloy 2024 after severe plastic deformation. Metallogr. Microstruct. Anal. 2023, 12, 564–566. [Google Scholar] [CrossRef]
- Sagar, K.G.; Suresh, P.M.; Sampathkumaran, P. Tribological studies on aluminum beryl composites subjected to ECAP process. Wear 2023, 523, 204775. [Google Scholar] [CrossRef]
- El-Garaihy, W.H.; BaQais, A.; Alateyah, A.I.; Alsharekh, M.F.; Alawad, M.O.; Shaban, M.; Alsunaydih, F.N.; Kamel, M. The impact of ECAP parameters on the structural and mechanical behavior of pure Mg: A combination of experimental and machine learning approaches. Appl. Sci. 2023, 13, 6279. [Google Scholar] [CrossRef]
- Shin, D.H.; Park, K.T. Ultrafine grained steels processed by equal channel angular pressing. Mater. Sci. Eng. A 2005, 410–411, 299–302. [Google Scholar] [CrossRef]
- Bodyakova, A.; Tkachev, M.; Pilipenko, A.; Belyakov, A.; Kaibyshev, R. Effect of deformation methods on microstructure, texture, and properties of a Cu–Mg alloy. Mater. Sci. Eng. A 2023, 876, 145126. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C.Y.; Xie, H.Y. Hall-Petch relation and grain boundary slipping in Al–Mg–Sc alloys with fine equiaxed grain structure. Mater. Charact. 2022, 194, 112472. [Google Scholar] [CrossRef]
- Terhune, S.D.; Swicher, D.L.; Ishi, K.O.; Horita, Z.; Langdon, T.G.; McNelly, T.R. An investigation of microstructure and grain-boundary evolution during ECA pressing of pure aluminum. Metall. Mater. Trans. A 2002, 33, 2173. [Google Scholar] [CrossRef]
- Tang, L.; Peng, X.; Huang, J.; Ma, A.; Deng, Y.; Xu, G. Microstructure and mechanical properties of severely deformed Al–Mg–Sc–Zr alloy and their evolution during annealing. Mater Sci. Eng. A 2019, 754, 295–308. [Google Scholar] [CrossRef]
- Damavandi, E.; Nourouzi, S.; Rabiee, S.M.; Jamaati, R. Effect of ECAP on microstructure and tensile properties of A390 aluminum alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 931–940. [Google Scholar] [CrossRef]
- Nakashima, K.; Horita, Z.; Nemoto, M.; Langdon, T.G. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Mater. 1998, 46, 1589–1599. [Google Scholar] [CrossRef]
- Kawasaki, M.; Horita, Z.; Nemoto, M.; Langdon, T.G. Microstructural evolution in high purity aluminum processed by ECAP. Mater. Sci. Eng. A 2009, 524, 143–150. [Google Scholar] [CrossRef]
- Skrotzki, W.; Scheerbaum, N.; Oertel, C.G.; Brokmeier, H.G.; Suwas, S.; Tóth, L.S. Texture Formation during ECAP of Aluminum Alloy AA 5109. Mater. Sci. Forum 2006, 503–504, 99–106. [Google Scholar] [CrossRef]
- Xue, D.; Wei, W.; Wen, S.; Wu, X.; Shi, W.; Zhou, X.; Gao, K.; Huang, H.; Nie, Z. Microstructural evolution of Al-Mg-Er-Zr alloy by equal channel angular extrusion at room temperature. Mater. Lett. 2023, 3341, 133759. [Google Scholar] [CrossRef]
- Sitdikov, O.; Avtokratova, E.; Markushev, M.; Sakai, T. Structural characterization of binary Al-Cu alloy processed by equal channel angular pressing at half of the melting point. Metall. Mater. Trans. A 2023, 54, 505–525. [Google Scholar] [CrossRef]
- Ghosh, A.; Ghosh, M.; Gudimetla, K.; Kalsar, R.; Kestens, L.A.; Kondaveeti, C.S.; Singh Pugazhendhi, B.; Ravisankar, B. Development of ultrafine grained Al–Zn–Mg–Cu alloy by equal channel angular pressing: Microstructure, texture and mechanical properties. Arch. Civ. Mech. Eng. 2020, 20, 7. [Google Scholar] [CrossRef]
- Huang, S.J.; Subramani, M.; Borodianskiy, K.; Immanuel, P.N.; Chiang, C.C. Effect of equal channel angular pressing on the mechanical properties of homogenized hybrid AZ61 magnesium composites. Mater. Today Commun. 2023, 34, 104974. [Google Scholar] [CrossRef]
- Dyakonov, G.S.; Raab, G.I.; Pesin, M.V.; Polyakov, A.V.; Semenova, I.P.; Valiev, R.Z. Superplastic-like behavior and enhanced strength of a two-phase titanium alloy with ultrafine grains. Adv. Eng. Mater. 2022, 24, 2101592. [Google Scholar] [CrossRef]
- Mabuchi, M.; Higashi, K. Mechanical properties of pure aluminium processed by equal channel angular extrusion. J. Mater. Sci. Lett. 1998, 17, 215–217. [Google Scholar] [CrossRef]
- Verlinden, B.; Popović, M. Influence of Cu on the Mechanical Properties of an Al-4.4 wt% Mg Alloy after ECAP. Mater. Sci. Forum 2006, 503–504, 107–112. [Google Scholar] [CrossRef]
- Schiøtz, J.; Vegge, T.; Di Tolla, F.D.; Jacobsen, K.W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 1999, 60, 11971–11983. [Google Scholar] [CrossRef]
- Hahn, H.; Mondal, P.; Padmanabhan, K.A. Plastic deformation of nanocrystalline materials. J. Nanostruct. 1997, 9, 603–606. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Krasilnikov, N.A.; Tsenev, N.K. Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A 1991, 137, 35–40. [Google Scholar] [CrossRef]
- Lifshitz, I.M. On the theory of diffusion-viscous flow of polycrystalline bodies. Sov. Phys. Jetp-Ussr 1963, 17, 909–920. [Google Scholar]
- Rachinger, W.A. Relative grain translations in the plastic flow of aluminium. J. Inst. Met. 1952, 81, 33. [Google Scholar]
- Furukawa, M.; Horita, Z.; Nemoto, M.; Langdon, T.G. The significance of the Hall-Petch relationship in ultra-fine grained materials: Matériaux à grains ultra-fins produits par hypercorroyage. In Annales de Chimie; Lavoisier: Cachan, France, 1996; Volume 21, pp. 493–502. [Google Scholar]
- Chokshi, A.H.; Rosen, A.; Karch, J.; Gleiter, H. On the validity of the hall-petch relationship in nanocrystalline materials. Scr. Metall. 1989, 23, 1679–1683. [Google Scholar] [CrossRef]
- Nieh, T.G.; Wadsworth, J. Hall-petch relation in nanocrystalline solids. Scr. Metall. Mater. 1991, 25, 955–958. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Korznikov, A.V.; Mulyukov, R.R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A 1993, 168, 141–148. [Google Scholar] [CrossRef]
- Gubicza, J.; Chinh, N.Q.; Szommer, P.; Vinogradov, A.; Langdon, T.G. Microstructural characteristics of pure gold processed by equal-channel angular pressing. Scr. Mater. 2007, 56, 947–950. [Google Scholar] [CrossRef]
- Alipour, S.; Vafaeenezhad, H.; Fesahat, M.; Yazdi, A.; Mousavi-Khoshdel, S.M.; Soltanieh, M. Electrochemical behavior of ECAP-processed Sn–5Sb alloy. J. Mater. Res. Technol. 2023, 23, 5193–5211. [Google Scholar] [CrossRef]
- Hussainova, I.; Kommel, L.; Lohmus, R.; Volobujeva, O. Microscopic characterization of surface morphology of nanostructured copper. Rev. Adv. Mater. Sci. 2005, 10, 266–271. [Google Scholar]
- Kimura, H.; Kojima, Y.; Akiniwa, Y.; Tanaka, K.; Ishida, T. Fatigue damage mechanism of nanocrystals in ECAP-processed copper investigated by EBSD and AFM hybrid methods. Key Eng. Mater. 2007, 340, 943–948. [Google Scholar] [CrossRef]
- Huang, Y.; Langdon, T.G. Characterization of deformation processes in a Zn-22% Al alloy using atomic force microscopy. J. Mater. Sci. 2002, 37, 4993–4998. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Wang, J.; Horita, Z.; Nemoto, M.; Langdon, T.G. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 1996, 35, 143–146. [Google Scholar] [CrossRef]
- Langford, J.I. National Institute of Standards and Technology Special Publication 846. In Proceedings of the International Conference Accuracy in Powder Diffraction II, NIST, Gaithersburg, MD, USA, 26–29 May 1992; pp. 241–244. [Google Scholar]
- Rebhi, A.; Maklouf, T.; Njah, N.; Champion, Y.; Couzinié, J.P. Characterization of aluminium processed by equal angular extrusion: Effect of processing route. Mater. Charact. 2009, 60, 1489–1495. [Google Scholar] [CrossRef]
- Ghosh, A.; Das, K.; Eivani, A.R.; Mohammadi, H.; Vafaeenezhad, H.; Murmu, U.K.; Jafarian, H.R.; Ghosh, M. Development of mechanical properties and microstructure for Al–Zn–Mg–Cu alloys through ECAP after optimizing the outer corner angles through FE modeling. Arch. Civ. Mech. Eng. 2023, 23, 78. [Google Scholar] [CrossRef]
- Bate, P.S.; Humphreys, F.J.; Ridley, N.; Zhang, B. Microstructure and texture evolution in the tension of superplastic Al–6Cu–0.4 Zr. Acta Mater. 2005, 53, 3059–3069. [Google Scholar] [CrossRef]
- Ito, Y.; Horita, Z. Microstructural evolution in pure aluminum processed by high-pressure torsion. Mater. Sci. Eng. 2009, 503, 32–36. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamagaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Zangiabadi, A.; Kazeminezhad, M. Development of a novel severe plastic deformation method for tubular materials: Tube Channel Pressing (TCP). Mater. Sci. Eng. 2011, 528, 5066–5072. [Google Scholar] [CrossRef]
- Vinogradov, A.; Hashimoto, S.; Patlan, V.; Kitagawa, K. Atomic force microscopic study on surface morphology of ultra-fine grained materials after tensile testing. Mater. Sci. Eng. A 2001, 319, 862–866. [Google Scholar] [CrossRef]
- Zhou, F.; Liao, X.Z.; Zhu, Y.T.; Dallek, S.; Lavernia, E.J. Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Mater. 2003, 51, 2777–2791. [Google Scholar] [CrossRef]
- Zaidi, M.A.; Sheppard, T. Effect of high-temperature soak and cooling rate on recrystallization behaviour of two Al-Mg alloys (AA 5252 and AA 5454). Met. Technol. 1984, 11, 313–319. [Google Scholar] [CrossRef]
- Koken, E.; Embury, J.D.; Ramachandran, T.R.; Malis, T. Recrystallization at shear bands in Al-Mg. Scr. Metall. 1988, 22, 99–103. [Google Scholar] [CrossRef]
- Korchef, A.; Champion, Y.; Njah, N. X-ray diffraction analysis of aluminium containing Al8Fe2Si precipitates processed by equal channel angular pressing. J. Alloys Compd. 2007, 427, 176–182. [Google Scholar] [CrossRef]
Number of ECAP Passes N | Crystallite Size (nm) | Microstrains (%) | Dislocations Density (×1015 m−2) | Vickers Microhardness (HV) | σ0.2 (MPa) |
---|---|---|---|---|---|
0 | 8 × 104 | - | - | 33 | 110 |
1 | 190 | 0.08 | 1.6 | 60 | 190 |
2 | 185 | 0.09 | 2.5 | 63 | 210 |
3 | 165 | 0.12 | 2.6 | 65 | 230 |
4 | 150 | 0.15 | 2.8 | 76 | 240 |
Temperature (°C) | Vickers Microhardness (HV) | σ0.2 (MPa) |
---|---|---|
25 | 60 | 190 |
200 | 80 | 215 |
370 | 40 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korchef, A.; Souid, I. Grain Refinement and Strengthening of an Aluminum Alloy Subjected to Severe Plastic Deformation through Equal-Channel Angular Pressing. Crystals 2023, 13, 1160. https://doi.org/10.3390/cryst13081160
Korchef A, Souid I. Grain Refinement and Strengthening of an Aluminum Alloy Subjected to Severe Plastic Deformation through Equal-Channel Angular Pressing. Crystals. 2023; 13(8):1160. https://doi.org/10.3390/cryst13081160
Chicago/Turabian StyleKorchef, Atef, and Imen Souid. 2023. "Grain Refinement and Strengthening of an Aluminum Alloy Subjected to Severe Plastic Deformation through Equal-Channel Angular Pressing" Crystals 13, no. 8: 1160. https://doi.org/10.3390/cryst13081160
APA StyleKorchef, A., & Souid, I. (2023). Grain Refinement and Strengthening of an Aluminum Alloy Subjected to Severe Plastic Deformation through Equal-Channel Angular Pressing. Crystals, 13(8), 1160. https://doi.org/10.3390/cryst13081160