Photoluminescence and Temperature Sensing Properties of Bi3+/Sm3+ Co-Doped La2MgSnO6 Phosphor for Optical Thermometer
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, L.; Jiang, S.; Wang, X.; Li, Y.; Wang, Y.; Xie, J.; Ling, F.; Wang, Y.; Xiang, G.; Li, L.; et al. Dual-mode optical thermometry based on intervalence charge transfer excitations in Tb3+/Pr3+ co-doped CaNb2O6 phosphors. Ceram. Int. 2022, 48, 30005–30011. [Google Scholar] [CrossRef]
- Su, Y.; Yuan, L.; Liu, H.; Xiong, G.; Wu, H.; Hu, Y.; Cheng, X.; Jin, Y. Multi-site occupation of Cr3+ toward developing broadband near-infrared phosphors. Ceram. Int. 2021, 47, 23558–23563. [Google Scholar] [CrossRef]
- Guo, J.; Guo, J.; Gao, J.; Chen, J.; Yang, Y.; Yang, Y.; Zheng, L.; Li, Y.; Zhao, L.; Deng, B.; et al. A novel broadband-excited LaNb2VO9: Sm3+ orange-red-emitting phosphor with zero-thermal-quenching behavior for WLEDs and personal identification. Ceram. Int. 2022, 48, 26992–27002. [Google Scholar]
- Wang, C.; Jin, Y.; Yuan, L.; Wu, H.; Ju, G.; Li, Z.; Liu, D.; Lv, Y.; Chen, L.; Hu, Y. A spatial/temporal dual-mode optical thermometry platform based on synergetic luminescence of Ti4+-Eu3+ embedded flexible 3D micro-rod arrays: High-sensitive temperature sensing and multi-dimensional high-level secure anti-counterfeiting. Chem. Eng. J. 2019, 374, 992–1004. [Google Scholar] [CrossRef]
- Sinha, S.; Mahata, M.K.; Swart, H.C.; Kumar, A.; Kumar, K. Enhancement of upconversion, temperature sensing and cathodoluminescence in the K+/Na+ compensated CaMoO4: Er3+/Yb3+ nanophosphor. New J. Chem. 2017, 41, 5362–5372. [Google Scholar] [CrossRef]
- Wei, R.; Guo, J.; Li, K.; Yang, L.; Tian, X.; Li, X.; Hu, F.; Guo, H. Dual-emitting SrY2O4: Bi3+, Eu3+ phosphor for ratiometric temperature sensing. J. Lumin. 2019, 216, 116737. [Google Scholar] [CrossRef]
- Pankratov, V.; Popov, A.I.; Chernov, S.A.; Zharkouskaya, A.; Feldmann, C. Mechanism for energy transfer processes between Ce3+ and Tb3+ in LaPO4: Ce, Tb nanocrystals by time-resolved luminescence spectroscopy. Phys. Status Solidi B 2010, 247, 2252–2257. [Google Scholar] [CrossRef]
- Van Wijngaarden, J.; Scheidelaar, S.; Vlugt, T.; Reid, M.; Meijerink, A. Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple. Phys. Rev. B 2010, 81, 155112. [Google Scholar] [CrossRef]
- Su, B.; Xie, H.; Tan, Y.; Zhao, Y.; Yang, Q.; Zhang, S. Luminescent properties, energy transfer, and thermal stability of double perovskites La2MgTiO6: Sm3+, Eu3+. J. Lumin. 2018, 204, 457–463. [Google Scholar] [CrossRef]
- Gao, P.; Dong, P.; Zhou, Z.; Li, Q.; Li, H.; Zhou, Z.; Xia, M.; Zhang, P. Enhanced luminescence and energy transfer performance of double perovskite structure Gd2MgTiO6: Bi3+, Mn4+ phosphor for indoor plant growth LED lighting. Ceram. Int. 2021, 47, 16588–16596. [Google Scholar] [CrossRef]
- Ji, C.; Huang, Z.; Wen, J.; Zhang, J.; Tian, X.; He, H.; Zhang, L.; Huang, T.-H.; Xie, W.; Peng, Y. Blue-emitting Bi-doped double perovskite Gd2ZnTiO6 phosphor with near-ultraviolet excitation for warm white light-emitting diodes. J. Alloys Compd. 2019, 788, 1127–1136. [Google Scholar] [CrossRef]
- Cai, P.; Qin, L.; Chen, C.; Wang, J.; Bi, S.; Kim, S.I.; Huang, Y.; Seo, H.J. Optical thermometry based on vibration sidebands in Y2MgTiO6: Mn4+ double perovskite. Inorg. Chem. 2018, 57, 3073–3081. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Mu, Z.; Zhang, S.; Du, Q.; Qian, Y.; Zhu, D.; Wu, F. Bi3+ and Sm3+ co-doped La2MgGeO6: A novel color-temperature indicator based on different heat quenching behavior from different luminescent centers. J. Lumin. 2019, 206, 462–468. [Google Scholar] [CrossRef]
- Lu, Z.; Sun, D.; Lyu, Z.; Shen, S.; Wang, J.; Zhao, H.; Wang, L.; You, H. Double Perovskite Mn4+-Doped La2CaSnO6/La2MgSnO6 Phosphor for Near-Ultraviolet Light Excited W-LEDs and Plant Growth. Molecules 2022, 27, 7697. [Google Scholar] [CrossRef]
- Wu, Q.; Li, P.; Ye, Z.; Huo, X.; Yang, H.; Wang, Y.; Wang, D.; Zhao, J.; Yang, Z.; Wang, Z. Near-infrared emitting phosphor LaMg0.5(SnGe)0.5O3: Cr3+ for plant growth applications: Crystal structure, luminescence, and thermal stability. Inorg. Chem. 2021, 60, 16593–16603. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Guan, A.; Yu, D.; Xia, S.; Gao, F.; Zhang, X.; Zhou, L.; Li, Y.; Li, R. Synthesis, structure, and luminescence properties of a novel double-perovskite Sr2LaNbO6: Mn4+ phosphor. Mater. Res. Bull. 2017, 88, 258–265. [Google Scholar] [CrossRef]
- Bragg, W.H.; Bragg, W.L. The reflection of X-rays by crystals. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1913, 88, 428–438. [Google Scholar] [CrossRef]
- Jaffar, B.M.; Swart, H.C.; Seed Ahmed, H.A.A.; Yousif, A.; Kroon, R.E. Luminescence properties of Bi doped La2O3 powder phosphor. J. Lumin. 2019, 209, 217–224. [Google Scholar] [CrossRef]
- Maughan, A.E.; Ganose, A.M.; Almaker, M.A.; Scanlon, D.O.; Neilson, J.R. Tolerance factor and cooperative tilting effects in vacancy-ordered double perovskite halides. Chem. Mater. 2018, 30, 3909–3919. [Google Scholar] [CrossRef]
- Bartel, C.J.; Sutton, C.; Goldsmith, B.R.; Ouyang, R.; Musgrave, C.B.; Ghiringhelli, L.M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0693. [Google Scholar] [CrossRef]
- Hanif, A.; Aldaghfag, S.; Aziz, A.; Yaseen, M.; Murtaza, A. Theoretical investigation of physical properties of Sr2XNbO6 (X = La, Lu) double perovskite oxides for optoelectronic and thermoelectric applications. Int. J. Energy Res. 2022, 46, 10633–10643. [Google Scholar] [CrossRef]
- Shi, C.; Yu, C.H.; Zhang, W. Predicting and screening dielectric transitions in a series of hybrid organic–inorganic double perovskites via an extended tolerance factor approach. Angew. Chem. 2016, 128, 5892–5896. [Google Scholar] [CrossRef]
- Yun, X.; Zhou, J.; Zhu, Y.; Li, X.; Liu, S.; Xu, D. A Potentially Multifunctional Double-Perovskite Sr2ScTaO6: Mn4+, Eu3+ Phosphor for Optical Temperature Sensing and Indoor Plant Growth Lighting. J. Lumin. 2022, 244, 118724. [Google Scholar] [CrossRef]
- Dexter, D.L.; Schulman, J.H. Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 1954, 22, 1063–1070. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, X.; Cheng, L.; Mi, X.; Liu, Q. Crystal Structure, Luminescence Properties and Thermal Stability of Lu3+ Ion-Substituted BaY2Si3O10: Dy3+ Phosphors. J. Alloys Compd. 2022, 898, 162758. [Google Scholar] [CrossRef]
- Sun, J.F.; Lian, Z.P.; Shen, G.Q.; Shen, D.Z. Blue–white–orange color-tunable luminescence of Ce3+/Mn2+-codoped NaCaBO3 via energy transfer: Potential single-phase white-light-emitting phosphors. RSC Adv. 2013, 3, 18395–18405. [Google Scholar] [CrossRef]
- Ding, X.; Zhu, G.; Geng, W.; Mikami, M.; Wang, Y. Novel blue and green phosphors obtained from K2ZrSi3O9: Eu2+ compounds with different charge compensation ions for LEDs under near-UV excitation. J. Mater. Chem. C 2015, 3, 6676–6685. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Q.; Jin, Y. Temperature dependence of energy transfer in tunable white light-emitting phosphor BaY2Si3O10: Bi3+, Eu3+ for near UV LEDs. J. Mater. Chem. C 2015, 3, 11151–11162. [Google Scholar] [CrossRef]
- Van Uitert, L.G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds. J. Lumin. 1984, 29, 1–9. [Google Scholar] [CrossRef]
- Tang, T.P.; Lee, C.M.; Yen, F.C. The photoluminescence of SrAl2O4: Sm phosphors. Ceram. Int. 2006, 32, 665–671. [Google Scholar] [CrossRef]
- Walfort, B.; Gartmann, N.; Afshani, J.; Rosspeintner, A.; Hagemann, H. Effect of excitation wavelength (blue vs near UV) and dopant concentrations on afterglow and fast decay of persistent phosphor SrAl2O4: Eu2+, Dy3+. J. Rare Earths 2022, 40, 1022–1028. [Google Scholar] [CrossRef]
- Adachi, S. Temperature Dependence of Luminescence Intensity and Decay Time in Mn4+-Activated Oxide Phosphors. ECS J. Solid State Sci. Technol. 2022, 11, 056003. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y. Sr2LiScB4O10: Ce3+/Tb3+: A green-emitting phosphor with high energy transfer efficiency and stability for LEDs and FEDs. Inorg. Chem. 2019, 58, 7440–7452. [Google Scholar] [CrossRef] [PubMed]
- Fartode, S.A.; Fartode, A.P.; Dhoble, S.J. A review: Thermoluminescence dosimeteric application for phosphor. AIP Conf. Proc. 2019, 2104, 020043. [Google Scholar]
- Souadi, G.; Kaynar, U.H.; Oglakci, M.; Sonsuz, M.; Ayvacikli, M.; Topaksu, M.; Canimoglu, A.; Can, N. Thermoluminescence characteristics of a novel Li2MoO4 phosphor: Heating rate, dose response and kinetic parameters. Radiat. Phys. Chem. 2022, 194, 110025. [Google Scholar] [CrossRef]
- Fu, J.; Zhou, L.; Chen, Y.; Lin, j.; Ye, R.; Deng, D.; Chen, L.; Xu, S. Dual-mode optical thermometry based on Bi3+/Sm3+ co-activated BaGd2O4 phosphor with tunable sensitivity. J. Alloys Compd. 2022, 897, 163034. [Google Scholar] [CrossRef]
- Tian, X.; Dou, H.; Wu, L. Non-contact thermometry with dual-activator luminescence of Bi3+/Sm3+: YNbO4 phosphor. Ceram. Int. 2020, 46, 10641–10646. [Google Scholar] [CrossRef]
- Ran, W.; Sun, G.; Ma, X.; Zhang, L.; Yu, J.S.; Noh, H.M.; Choi, B.C.; Jeong, J.H.; Yan, T. Bifunctional application of La3BWO9: Bi3+, Sm3+ phosphors with strong orange-red emission and sensitive temperature sensing properties. Dalton Trans. 2021, 50, 15187–15197. [Google Scholar] [CrossRef]
- Song, M.; Zhao, W.; Xue, J.; Wang, L.; Wang, J. Color-tunable luminescence and temperature sensing properties of a single-phase dual-emitting La2LiSbO6: Bi3+, Sm3+ phosphor. J. Lumin. 2021, 235, 118014. [Google Scholar] [CrossRef]
- Song, Y.; Guo, N.; Li, J.; Ouyang, R.; Miao, Y.; Shao, B. Photoluminescence and temperature sensing of lanthanide Eu3+ and transition metal Mn4+ dual-doped antimoniate phosphor through site-beneficial occupation. Ceram. Int. 2020, 46, 22164–22170. [Google Scholar] [CrossRef]
- Swart, H.C.; Kumar, A.; Nair, G.B. BaY2F8: Yb3+, Ho3+/Tm3+ Upconversion Phosphor for Optical Thermometer. In Proceedings of the 5th International Conference on Sensors and Electronic Instrumentation Advances SEIA’ 2019, Tenerife (Canary Islands), Spain, 25–27 September 2019. [Google Scholar]
- Peng, L.; Meng, Q.; Sun, W. Size dependent optical temperature sensing properties of Y2O3: Tb3+, Eu3+ nanophosphors. RSC Adv. 2019, 9, 2581–2590. [Google Scholar] [CrossRef]
- Li, J.-Y.; Hou, D.; Zhang, Y.; Li, H.; Lin, H.; Lin, Z.; Zhou, W.; Huang, R. Luminescence, energy transfer and temperature sensing property of Ce3+, Dy3+ doped LiY9(SiO4)6O2 phosphors. J. Lumin. 2019, 213, 184–190. [Google Scholar] [CrossRef]
- Wang, J.; Lei, R.; Zhao, S.; Huang, F.; Deng, D.; Xu, S.; Wang, H. Color tunable Bi3+/Eu3+ co-doped La2ZnTiO6 double perovskite phosphor for dual-mode ratiometric optical thermometry. J. Alloys Compd. 2021, 881, 160601. [Google Scholar] [CrossRef]
- Wang, Y.; Zuo, C.; Ma, C.; Ye, W.; Zhao, C.; Feng, Z.; Li, Y.; Wen, Z.; Wang, C.; Shen, X.; et al. Effects of Sc3+ ions on local crystal structure and up-conversion luminescence of layered perovskite NaYTiO4: Yb3+/Er3+. J. Alloys Compd. 2021, 876, 160166. [Google Scholar] [CrossRef]
- Jiang, Y.; Tong, Y.; Chen, S.; Zhang, W.; Hu, F.; Wei, R.; Guo, H. A three-mode self-referenced optical thermometry based on up-conversion luminescence of Ca2MgWO6: Er3+, Yb3+ phosphors. Chem. Eng. J. 2021, 413, 127470. [Google Scholar] [CrossRef]
Formula | LMS |
---|---|
Space group | P21/n |
Cell parameter (Å) | a = 5.6362, b = 5.7228, c = 8.01927 |
Volume (Å3) | 258.66 |
Structure type | Double perovskite |
Rwp (%) | 9.67 |
Rp (%) | 6.02 |
χ2 (%) | 2.48 |
Compounds | Temperature Range (K) | Sa-max (K−1) | Sr-max (%K−1) | Ref |
---|---|---|---|---|
BaY2F8:Yb3+/Ho3+ | 330–425 | 0.0057 | 0.6051 | [41] |
Y2O3: Tb3+/Eu3+ | 313–513 | 0.0261 | 0.683 | [42] |
LiY9(SiO4)6O2: Ce3+/Dy3+ | 300–400 | — | 0.43 | [43] |
La2ZnTiO6: Bi3+/Eu3+ | 293–573 | 0.0032 | 1.23 | [44] |
NaYTiO4: Yb3+/Er3+ | 308–618 | 0.0045 | — | [45] |
Ca2MgWO6: Er3+/Yb3+ | 303–573 | 0.126 | 0.11 | [46] |
La2MgSnO6: Bi3+/Sm3+ | 303–503 | 0.0055 | 0.88 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Qian, W.; Muhammad, R.; Chen, X.; Yu, X.; Song, K. Photoluminescence and Temperature Sensing Properties of Bi3+/Sm3+ Co-Doped La2MgSnO6 Phosphor for Optical Thermometer. Crystals 2023, 13, 991. https://doi.org/10.3390/cryst13070991
Xu Q, Qian W, Muhammad R, Chen X, Yu X, Song K. Photoluminescence and Temperature Sensing Properties of Bi3+/Sm3+ Co-Doped La2MgSnO6 Phosphor for Optical Thermometer. Crystals. 2023; 13(7):991. https://doi.org/10.3390/cryst13070991
Chicago/Turabian StyleXu, Qingliang, Wanqing Qian, Raz Muhammad, Xinhua Chen, Xueqing Yu, and Kaixin Song. 2023. "Photoluminescence and Temperature Sensing Properties of Bi3+/Sm3+ Co-Doped La2MgSnO6 Phosphor for Optical Thermometer" Crystals 13, no. 7: 991. https://doi.org/10.3390/cryst13070991
APA StyleXu, Q., Qian, W., Muhammad, R., Chen, X., Yu, X., & Song, K. (2023). Photoluminescence and Temperature Sensing Properties of Bi3+/Sm3+ Co-Doped La2MgSnO6 Phosphor for Optical Thermometer. Crystals, 13(7), 991. https://doi.org/10.3390/cryst13070991