Effects of LiF-Addition on Sintering Behavior and Dielectric Response of LaPO4 Ceramics at Microwave and Terahertz Frequency for LTCC Applications
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, Z.; Zhang, Y.; Wu, J.; Lu, B.; Yang, Y.; Zhang, H.; Li, J. Glass-free CaMg0.9−xLi0.2MnxSi2O6 ceramics with enhanced dielectric properties for microwave and THz frequency applications. Ceram. Int. 2022, 48, 24091–24099. [Google Scholar] [CrossRef]
- Guo, H.H.; Fu, M.S.; Zhou, D.; Du, C.; Wang, P.J.; Pang, L.X.; Liu, W.F.; Sombra, A.S.B.; Su, J.Z. Design of a High-Efficiency and -Gain Antenna Using Novel Low-Loss, Temperature-Stable Li2Ti1-x(Cu1/3Nb2/3)xO3 Microwave Dielectric Ceramics. ACS Appl. Mater. Interfaces 2021, 13, 912–923. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, S.; Yang, H.; Wen, Q.; Yang, Q.; Gui, L.; Zhao, Q.; Li, E. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. J. Adv. Ceram. 2021, 10, 885–932. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, Y.; Kimura, H.; Wu, H.; Yue, Z. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1−xTix)3(MoO4)9 ceramics. J. Adv. Ceram. 2023, 12, 82–92. [Google Scholar] [CrossRef]
- Guo, W.; Ma, Z.; Luo, Y.; Chen, Y.; Yue, Z.; Li, L. Structure, defects, and microwave dielectric properties of Al-doped and Al/Nd co-doped Ba4Nd9.33Ti18O54 ceramics. J. Adv. Ceram. 2022, 11, 629–640. [Google Scholar] [CrossRef]
- Feng, C.; Zhou, X.; Tao, B.; Wu, H.; Huang, S. Crystal structure and enhanced microwave dielectric properties of the Ce2[Zr1−x(Al1/2Ta1/2)x]3(MoO4)9 ceramics at microwave frequency. J. Adv. Ceram. 2022, 11, 392–402. [Google Scholar] [CrossRef]
- Li, F.; Tang, Y.; Li, J.; Fang, W.; Ao, L.; Wang, Y.; Zhao, X.; Fang, L. Effect of A-site cation on crystal structure and microwave dielectric properties of AGe4O9 (A = Ba, Sr) ceramics. J. Eur. Ceram. Soc. 2021, 41, 4153–4159. [Google Scholar] [CrossRef]
- Chen, J.; Fang, W.; Ao, L.; Tang, Y.; Li, J.; Liu, L.; Fang, L. Structure and chemical bond characteristics of two low-εr microwave dielectric ceramics LiBO2 (B = Ga, In) with opposite τf. J. Eur. Ceram. Soc. 2021, 41, 3452–3458. [Google Scholar] [CrossRef]
- Qian, J.; Li, G.; Zhu, K.; Ge, G.; Shi, C.; Liu, Y.; Yan, F.; Li, Y.; Shen, B.; Zhai, J.; et al. High Energy Storage Performance and Large Electrocaloric Response in Bi0.5Na0.5TiO3-Ba(Zr0.2Ti0.8)O3 Thin Films. ACS Appl. Mater. Interfaces 2022, 14, 54012–54020. [Google Scholar] [CrossRef]
- Norby, T.; Christiansen, N. Proton conduction in Ca- and Sr-substituted LaPO4. Solid State Ion. 1995, 77, 240–243. [Google Scholar] [CrossRef]
- Rambabu, U.; Amalnerkar, D.P.; Kale, B.B.; Buddhudu, S. Optical properties of LnPO4:Tb3+ (Ln = Y, La and Gd) powder phosphors. Mater. Chem. Phys. 2001, 70, 401–408. [Google Scholar] [CrossRef]
- Onoda, H.; Nariai, H.; Maki, H.; Motooka, I. Addition of Urea or Biuret on Synthesis of Rhabdophanetype Neodymium and Cerium Phosphates. J. Mater. Synth. Process. 2002, 10, 121–126. [Google Scholar] [CrossRef]
- Narasimha, B.; Chouduary, R.N.P.; Rao, K.V. Dielectric properties of LaPO4 ceramics. J. Mater. Sci. 1988, 23, 1416–1418. [Google Scholar] [CrossRef]
- Cho, I.-S.; Choi, G.K.; An, J.-S.; Kim, J.-R.; Hong, K.S. Sintering, microstructure and microwave dielectric properties of rare earth orthophosphates, RePO4 (Re=La, Ce, Nd, Sm, Tb, Dy, Y, Yb). Mater. Res. Bull. 2009, 44, 173–178. [Google Scholar] [CrossRef]
- Kamutzki, F.; Schneider, S.; Müller, J.T.; Barowski, J.; Klimm, D.; Gurlo, A.; Hanaor, D.A.H. Low-Temperature Sintering of Low-Loss Millimeter-Wave Dielectric Ceramics Based on Li-Kosmochlor, LiCrSi2O6. Phys. Status Solidi A 2023, 220, 1–11. [Google Scholar] [CrossRef]
- Intatha, U.; Eitssayeam, S.; Pengpat, K.; MacKenzie, K.J.D.; Tunkasiri, T. Dielectric properties of low temperature sintered LiF doped BaFe0.5Nb0.5O3. Mater. Lett. 2007, 61, 196–200. [Google Scholar] [CrossRef]
- Song, F.; Wang, X.; Lv, J.; An, Z.; Xu, Y.; Zhang, L.; Guo, H.; Zhou, D.; Zhou, H.; Shi, F. Lattice vibrational characteristics and structure-property relationships of SrWO4−x wt.% LiF (x = 0.5–3.0) microwave dielectric ceramics. Ceram. Int. 2022, 49, 9338–9345. [Google Scholar] [CrossRef]
- Hao, Y.-Z.; Yang, H.; Chen, G.-H.; Zhang, Q.-L. Microwave dielectric properties of Li2TiO3 ceramics doped with LiF for LTCC applications. J. Alloys Compd. 2013, 552, 173–179. [Google Scholar] [CrossRef]
- Jerzy, K.; Derzakowski, K.; Riddle, B.; Baker-Jarvis, J. A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as a function of temperature. Meas. Sci. Technol. 1998, 9, 1751–1756. [Google Scholar]
- Guo, W.; Ma, Z.; Chen, Y.; Lu, Y.; Yue, Z. Lattice dynamics and terahertz response of microwave dielectrics: A case study of Al-doped Ca0.6Sm0.27TiO3 ceramics. J. Eur. Ceram. Soc. 2022, 42, 4953–4961. [Google Scholar] [CrossRef]
- Luo, W.; Li, L.; Yu, S.; Li, J.; Zhang, B.; Qiao, J.; Chen, S. Bond theory, terahertz spectra, and dielectric studies in donor-acceptor (Nb-Al) substituted ZnTiNb2O8 system. J. Am. Ceram. Soc. 2019, 102, 4612–4620. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, L.; Sun, J.; Zhang, N.; Sun, H.; Wu, H.; Tao, W. Effects of (Mg1/3Sb2/3)4+ substitution on the structure and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics. J. Adv. Ceram. 2021, 10, 778–789. [Google Scholar] [CrossRef]
- Pupeza, I.; Wilk, R.; Koch, M. Highly accurate optical material parameter determination with THz time-domain spectroscopy. Opt. Express 2007, 15, 4335–4350. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Chan, C.H. Terahertz free-space dielectric property measurements using time- and frequency-domain setups. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, e21839. [Google Scholar] [CrossRef]
- Huang, J.B.; Yang, B.; Yu, C.Y.; Zhang, G.F.; Xue, H.; Xiong, Z.X.; Viola, G.; Donnan, R.; Yan, H.X.; Reece, M.J. Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics. Mater. Lett. 2015, 138, 225–227. [Google Scholar] [CrossRef]
- Bao, J.; Du, J.; Liu, L.; Wu, H.; Zhou, Y.; Yue, Z. A new type of microwave dielectric ceramic based on K2O–SrO–P2O5 composition with high quality factor and low sintering temperature. Ceram. Int. 2022, 48, 784–794. [Google Scholar] [CrossRef]
- Xiao, E.C.; Cao, Z.; Li, J.; Li, X.H.; Liu, M.; Yue, Z.; Chen, Y.; Chen, G.; Song, K.; Zhou, H.; et al. Crystal structure, dielectric properties, and lattice vibrational characteristics of LiNiPO4 ceramics sintered at different temperatures. J. Am. Ceram. Soc. 2019, 103, 2528–2539. [Google Scholar] [CrossRef]
- Xing, C.; Li, J.; Wang, J.; Chen, H.; Qiao, H.; Yin, X.; Wang, Q.; Qi, Z.M.; Shi, F. Internal Relations between Crystal Structures and Intrinsic Properties of Nonstoichiometric Ba1+ xMoO4 Ceramics. Inorg. Chem. 2018, 57, 7121–7128. [Google Scholar] [CrossRef]
- An, Z.; Lv, J.; Wang, X.; Xu, Y.; Zhang, L.; Shi, F.; Guo, H.; Zhou, D.; Liu, B.; Song, K. Effects of LiF additive on crystal structures, lattice vibrational characteristics and dielectric properties of CaWO4 microwave dielectric ceramics for LTCC applications. Ceram. Int. 2022, 48, 29929–29937. [Google Scholar] [CrossRef]
- Chen, J.; Fang, W.; Tang, Y.; Jie, L.; Fang, L. Effects of LiF addition on the densification and microwave dielectric properties of LiInO2 ceramics. Ceram. Int. 2021, 47, 28960–28967. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Sun, J.J.; Dai, N.; Wu, Z.C.; Wu, H.T.; Yang, C.H. Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. J. Eur. Ceram. Soc. 2019, 39, 1127–1131. [Google Scholar] [CrossRef]
- Parvez Ahmad, M.D.; Venkateswara Rao, A.; Suresh Babu, K.; Narsinga Rao, G. Effect of carbon-doping on structural and dielectric properties of zinc oxide. J. Adv. Dielectr. 2020, 10, 2050017. [Google Scholar] [CrossRef]
- Diao, C.-L.; Wang, C.-H.; Luo, N.-N.; Qi, Z.-M.; Shao, T.; Wang, Y.-Y.; Lu, J.; Shi, F.; Jing, X.-P.; Ching, W.Y. First-Principle Calculation and Assignment for Vibrational Spectra of (Mg1/2W1/2)O3 Microwave Dielectric Ceramic. J. Am. Ceram. Soc. 2013, 96, 2898–2905. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Z.; Li, J.; Xu, M.; Zhai, Y.; Duan, L.; Su, C.; Liu, L.; Sun, Y.; Fang, L. A3Y2Ge3O12 (A = Ca, Mg): Two novel microwave dielectric ceramics with contrasting τf and Q × f. J. Eur. Ceram. Soc. 2020, 40, 3989–3995. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Chen, Y.; Zhang, J.; Yue, Z. Thermally-stimulated defect relaxations and microwave/terahertz dielectric response of La,Al co-doped (Ba,Sr)La4Ti4O15 ceramics. J. Eur. Ceram. Soc. 2021, 41, 158–164. [Google Scholar] [CrossRef]
- Shi, F.; Dong, H. Correlation of crystal structure, dielectric properties and lattice vibration spectra of (Ba1-xSrx)(Zn1/3Nb2/3)O3 solid solutions. Dalton. Trans. 2011, 40, 6659–6667. [Google Scholar] [CrossRef]
- Diao, C.-L.; Wang, C.-H.; Luo, N.-N.; Qi, Z.-M.; Shao, T.; Wang, Y.-Y.; Lu, J.; Wang, Q.-C.; Kuang, X.-J.; Fang, L.; et al. First-principle calculation and assignment for vibrational spectra of Ba(Mg1/3Nb2/3)O3microwave dielectric ceramic. J. Appl. Phys. 2014, 115, 114103. [Google Scholar] [CrossRef]
- Tian, H.; Zheng, J.; Liu, L.; Wu, H.; Kimura, H.; Lu, Y.; Yue, Z. Structure characteristics and microwave dielectric properties of Pr2(Zr1−xTix)3(MoO4)9 solid solution ceramic with a stable temperature coefficient. J. Mater. Sci. Technol. 2022, 116, 121–129. [Google Scholar] [CrossRef]
- Zubkov, S.V.; Vlasenko, V.G.; Shuvaeva, V.A.; Shevtsova, S.I. Structure and dielectric properties of solid solutions Bi7Ti4+xWxTa1–2xO21 (x = 0–0.5). Phys. Solid State 2016, 58, 42–49. [Google Scholar] [CrossRef]
x = 0 | x = 1 | x = 2 | x = 3 | x = 4 | x = 5 | |
---|---|---|---|---|---|---|
a (Å) | 6.8358 | 6.8359 | 6.8368 | 6.8366 | 6.8367 | 6.8371 |
b (Å) | 7.0728 | 7.0743 | 7.0749 | 7.0745 | 7.0746 | 7.0748 |
c (Å) | 6.5058 | 6.5043 | 6.5070 | 6.5069 | 6.5068 | 6.5069 |
α (°) | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 |
β (°) | 103.295 | 103.276 | 103.268 | 103.270 | 103.272 | 103.273 |
γ (°) | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 |
Z | 4 | 4 | 4 | 4 | 4 | 4 |
Vm (Å3) | 306.115 | 306.233 | 306.337 | 306.307 | 306.310 | 306.339 |
Rp | 10.60 | 10.70 | 11.50 | 9.42 | 9.12 | 9.08 |
Rwp | 12.30 | 12.30 | 12.30 | 10.90 | 10.40 | 10.50 |
Rewp | 5.52 | 5.69 | 6.26 | 5.96 | 6.18 | 5.92 |
χ2 | 2.23 | 2.16 | 1.96 | 1.82 | 1.68 | 1.77 |
Composition | S.T (°C) | εr | Q × f (GHz) | τf (ppm/°C) |
---|---|---|---|---|
x = 0 | 1400 | 8.73 | 44,449 | −42.18 |
x = 1 | 900 | 9.81 | 53,247 | −43.14 |
x = 2 | 900 | 9.19 | 62,844 | −46.40 |
x = 3 | 750 | 10.04 | 81,467 | −43.79 |
x = 4 | 750 | 9.61 | 43,674 | −40.41 |
x = 5 | 750 | 8.56 | 33,873 | −34.72 |
Mode | LaPO4-3 wt.% LiF | ε∞ = 2.341 | ||
---|---|---|---|---|
ωoj | ωpj | γj | Δεj | |
1 | 126.5378 | 47.4173 | 7.1522 | 0.1404 |
2 | 157.7606 | 62.9653 | 8.1873 | 0.1593 |
3 | 197.1342 | 152.8907 | 23.5457 | 0.6015 |
4 | 214.3998 | 149.5696 | 16.9943 | 0.4867 |
5 | 248.9289 | 191.8766 | 30.0668 | 0.5941 |
6 | 288.8744 | 175.8852 | 29.1625 | 0.3707 |
7 | 456.4929 | 449.3217 | 332.2120 | 0.9688 |
8 | 537.1147 | 134.5086 | 22.1472 | 0.0627 |
9 | 561.8092 | 52.2352 | 7.7303 | 0.0086 |
10 | 577.8740 | 82.8326 | 11.3729 | 0.0205 |
11 | 621.9667 | 151.3773 | 26.1880 | 0.0592 |
12 | 951.8753 | 93.8768 | 6.2487 | 0.0097 |
13 | 994.1020 | 147.9418 | 11.1387 | 0.0221 |
14 | 1035.2952 | 432.4328 | 68.0378 | 0.1745 |
15 | 1091.1393 | 290.0738 | 26.4696 | 0.0707 |
16 | 1145.5237 | 128.5903 | 28.4676 | 0.0126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, D.; Zhang, K.; Guo, W.; Xu, X.; Zhang, Y.; Sun, Y.; Xu, X.; Du, J.; Wu, H.; et al. Effects of LiF-Addition on Sintering Behavior and Dielectric Response of LaPO4 Ceramics at Microwave and Terahertz Frequency for LTCC Applications. Crystals 2023, 13, 1035. https://doi.org/10.3390/cryst13071035
Li H, Wang D, Zhang K, Guo W, Xu X, Zhang Y, Sun Y, Xu X, Du J, Wu H, et al. Effects of LiF-Addition on Sintering Behavior and Dielectric Response of LaPO4 Ceramics at Microwave and Terahertz Frequency for LTCC Applications. Crystals. 2023; 13(7):1035. https://doi.org/10.3390/cryst13071035
Chicago/Turabian StyleLi, Hu, Dongfeng Wang, Kainan Zhang, Weijia Guo, Xiaoyu Xu, Yanbin Zhang, Yan Sun, Xingqi Xu, Jialun Du, Haitao Wu, and et al. 2023. "Effects of LiF-Addition on Sintering Behavior and Dielectric Response of LaPO4 Ceramics at Microwave and Terahertz Frequency for LTCC Applications" Crystals 13, no. 7: 1035. https://doi.org/10.3390/cryst13071035
APA StyleLi, H., Wang, D., Zhang, K., Guo, W., Xu, X., Zhang, Y., Sun, Y., Xu, X., Du, J., Wu, H., Duan, G., & Yue, Z. (2023). Effects of LiF-Addition on Sintering Behavior and Dielectric Response of LaPO4 Ceramics at Microwave and Terahertz Frequency for LTCC Applications. Crystals, 13(7), 1035. https://doi.org/10.3390/cryst13071035