Editorial: Semiconductor Photocatalysts
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef] [PubMed]
- Iwashina, K.; Kudo, A. Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J. Am. Chem. Soc. 2011, 133, 13272–13275. [Google Scholar] [CrossRef] [PubMed]
- Schultz, D.M.; Yoon, T.P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, C.F.; Wu, X.; Yang, J. Material design for photocatalytic water splitting from a theoretical perspective. Adv. Mater. 2018, 30, 1802106. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chang, J.; Tang, W.; Xie, W.; Ang, Y.S. 2D materials and heterostructures for photocatalytic water-splitting: A theoretical perspective. J. Phys. D Appl. Phys. 2022, 55, 293002. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, A.; Chen, L.; Zhou, Z. 2D materials bridging experiments and computations for electro/photocatalysis. Adv. Energy Mater. 2022, 12, 2003841. [Google Scholar] [CrossRef]
- Sun, L.J.; Su, H.W.; Liu, Q.Q.; Hu, J.; Wang, L.L.; Tang, H. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Met. 2022, 41, 2387–2404. [Google Scholar] [CrossRef]
- Ye, L.; Peng, X.; Wen, Z.; Huang, H. Solid-state Z-scheme assisted hydrated tungsten trioxide/ZnIn2S4 photocatalyst for efficient photocatalytic H2 production. Mater. Futures 2022, 1, 035103. [Google Scholar] [CrossRef]
- Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661. [Google Scholar] [CrossRef]
- Tan, C.; Cao, X.; Wu, X.J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939. [Google Scholar] [CrossRef] [PubMed]
- Moniz SJ, A.; Shevlin, S.A.; Martin, D.J.; Guo, Z.-X.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy Environ. Sci. 2015, 8, 731–759. [Google Scholar] [CrossRef]
- Wang, G.; Tang, W.; Xie, W.; Tang, Q.; Wang, Y.; Guo, H.; Gao, P.; Dang, S.; Chang, J. Type-II CdS/PtSSe heterostructures used as highly efficient water-splitting photocatalysts. Appl. Surf. Sci. 2022, 589, 152931. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Li, Y.; Zhao, W.; Kuang, A.; Li, Y.; Xia, L.; Li, Y.; Xiao, S. Biaxial strain tunable photocatalytic properties of 2D ZnO/GeC heterostructure. J. Phys. D Appl. Phys. 2020, 53, 015104. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Dong, F.; Zhang, Z.; Han, L.; Luo, X.; Huang, J.; Feng, Z.; Chen, Z.; Jia, G.; et al. Recent advances in noncontact external-field-assisted photocatalysis: From fundamentals to applications. ACS Catal. 2021, 11, 4739–4769. [Google Scholar] [CrossRef]
- Alhalili, Z.; Smiri, M. The Influence of the Calcination Time on Synthesis of Nanomaterials with Small Size, High Crystalline Nature and Photocatalytic Activity in the TiO2 Nanoparticles Calcined at 500 °C. Crystals 2022, 12, 1629. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, Y.; Chen, H.; Wang, H.; Li, Y.; Chen, Y.; Zheng, Y. Designing Black Phosphorus and Heptazine-Based Crystalline Carbon Nitride Composites for Photocatalytic Water Splitting. Crystals 2023, 13, 312. [Google Scholar] [CrossRef]
- Li, J.; Pan, H.; Sun, H.; Zheng, R.; Ren, K. First-Principle Study of Two-Dimensional SiP2 for Photocatalytic Water Splitting with Ultrahigh Carrier Mobility. Crystals 2023, 13, 981. [Google Scholar] [CrossRef]
- Ren, K.; Zhu, Z.; Wang, K.; Huo, W.; Cui, Z. Stacking-mediated type-I/type-II transition in two-dimensional MoTe2/PtS2 heterostructure: A first-principles simulation. Crystals 2022, 12, 425. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Zhou, T.; Wang, S. Editorial: Semiconductor Photocatalysts. Crystals 2023, 13, 1109. https://doi.org/10.3390/cryst13071109
Wang G, Zhou T, Wang S. Editorial: Semiconductor Photocatalysts. Crystals. 2023; 13(7):1109. https://doi.org/10.3390/cryst13071109
Chicago/Turabian StyleWang, Guangzhao, Tingwei Zhou, and Sibo Wang. 2023. "Editorial: Semiconductor Photocatalysts" Crystals 13, no. 7: 1109. https://doi.org/10.3390/cryst13071109
APA StyleWang, G., Zhou, T., & Wang, S. (2023). Editorial: Semiconductor Photocatalysts. Crystals, 13(7), 1109. https://doi.org/10.3390/cryst13071109