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Since the discovery of the photocatalytic ability of TiO2 electrodes to decompose
water [1], techniques of semiconductor photocatalysis, including photocatalytic energy con-
version and photocatalytic pollution treatment, have achieved rapid development. In the
contemporary world, these concerns animate the interdisciplinary fields of semiconductor
physics, materials science, environmental and energy science, computational chemistry
and many others [2–9]. The overall photocatalysis process typically incorporates light
absorption, charge generation/separation/transfer, and surface redox reactions [5,6]. These
three steps are complementary and indispensable, and only when they executed with
a high degree of efficiency can the overall photocatalytic efficiency be high. A series of
strategies, such as foreign element doping [10,11], metal loading [12], heterojunction con-
struction [13,14], strain and external electric field regulation [15,16], have been developed
to overcome the bottlenecks of each step in order to improve the photocatalytic efficiency.
In this Special Issue of Crystals, entitled “Semiconductor Photocatalysts”, we have collected
a total of 4 articles about the recent progress in semiconductor photocatalysis. Next, we
briefly outline the research highlights of these studies.

Alhalili et al. [17] studied the effect of calcination time on TiO2 nanoparticles (NPs),
prepared from Aloe vera leaf extract, when the temperature was maintained at 500 °C
and discussed the relationship between calcination time and the size of NP. The size of
synthesized TiO2 NP decreases with the increase in calcination time. The NP with small
size possesses improved optical and photocatalytic activity. The visible light photocatalytic
ability for RR180 degradation varies with time, from 1 h with TiO2 NP (23 ± 2 nm) to 2 h
with TiO2 NP (83 ± 5 nm).

Xiao et al. [18] used molten salt and ultrasound-assisted liquid-phase exfoliation meth-
ods to successfully prepare a black phosphorus-/heptazine-based crystalline carbon nitride
(BP/KPHI) composite. The photocatalytic hydrogen production performance of BP/KPHI
composites can be tuned by altering the mass ration of BP. The 10% BP/KPHI composite
shows the highest photocatalytic hydrogen production rate of 4.3 mmol·g−1·h−1, which
is about three times higher than that of KPHI. The excellent photocatalytic performance
of BP/KPHI composite can primarily be attributed to the stellar photoinduced carrier
separation and excellent visible light harvesting capacity.

First-principles calculation based on density functional theory (DFT) plays an undeni-
able role in developing and designing novel semiconductor photocatalysts. Li et al. [19]
adopted first-principles calculation methods to investigate the geometric, electronic, op-
tical properties as well as the hydrogen evolution reaction (HER) and carrier mobility of
SiP2 monolayers (MLs) in order to explore their potential use in photocatalytic hydrogen
production. SiP2 MLs are indirect bandgap semiconductors with 2.277 bandgaps that are
still stable at 1200 K. The suitable band edge alignment and strong light absorption ability
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make SiP2 MLs into potential water-splitting photocatalyst. In addition, SiP2 MLs have
excellent electron mobility of 33,153 cm2·V−1·S−1. The calculated hydrogen adsorption
free energy shows that SiP2 ML possesses better HER ability compared to that of graphene.

Recently, Ren et al. [20] constructed different stacked MoTe2/PtS2 van der Waals het-
erostructures (vdWHs) and explored their electronic characteristics by using first-principles
calculation. By changing stacking configurations, the MoTe2/PtS2 vdWHs could achieve a
transition from type-I to type-II, which respectively possess potential applications in light
emitting diode and photocatalysis. The type-II MoTe2/PtS2 vdWH has adequate band-
edge alignment for overall water-splitting when pH is 0. In addition, MoTe2/PtS2 vdWHs
possess excellent visible light absorption capacity. All the results show that MoTe2/PtS2
vdWHs are promising candidates as photocatalytic and photovoltaic devices.

We hope that this Special Issue of Crystals, entitled “Semiconductor Photocatalysts”,
will be able to provide assistance and guidance for the development and design of novel
semiconductor photocatalysts.
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