A New, Precise Constitutive Model and Thermal Processing Map Based on the Hot Deformation Behavior of 2219 Aluminum Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Experiment
3. Constitutive Model
3.1. Arrhenius Model
3.1.1. Basic Expression
3.1.2. Parameter Solution
3.2. New Constitutive Model
3.2.1. Higher-Order Derivatives
3.2.2. Expression for the New Model
3.2.3. Parameter Solution
3.3. Prediction Accuracy Comparison
4. Hot Processing Maps and Microstructure
4.1. Hot Processing Maps
4.2. Microstructure
5. Discussion
- (1)
- The flow stress level increases significantly with increasing strain rate and decreasing deformation temperature. Since 2219 aluminum alloy is a strain-rate- and temperature-sensitive material, its constitutive relationship must take into account the influence of the temperature and strain rate. A first-order approximation between logarithmic stress and temperature and a third-order approximation between logarithmic stress and the logarithmic strain rate should be considered to construct a high-precision constitutive model without significantly increasing material parameters.
- (2)
- The prediction accuracy of the new model is slightly higher than that of the Arrhenius model at low strain rate levels (0.01 s−1 and 0.1 s−1). The new model displays a significantly higher prediction accuracy than the Arrhenius model at high strain rate (1 s−1 and 10 s−1) and low temperature (573 K and 623 K) levels. In addition, with increasing deformation temperature, the prediction accuracy of the Arrhenius model also increases at a constant strain rate. The new model has a similar prediction accuracy at each deformation temperature and deformation strain rate, and its prediction accuracy is higher than that of the Arrhenius model.
- (3)
- With an increase in temperature, the energy dissipation increases at a constant strain rate. With the increase of the strain rate, the energy dissipation first increases and then decreases at a constant temperature. The best region for hot processing is in the temperature range of 673~773 K and the strain rate range of 0.1~1 s−1. The results of microstructure analysis are in good agreement with the prediction results of hot processing maps. Hot processing maps can be used to guide the hot working process formulation of 2219 aluminum alloy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prabhu, T.R. Effects of ageing time on the mechanical and conductivity properties for various round bar diameters of AA 2219 Al alloy. Eng. Sci. Technol. Int. J. 2017, 20, 133–142. [Google Scholar] [CrossRef]
- He, H.; Yi, Y.; Huang, S.; Zhang, Y. An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties. J. Mater. Sci. Technol. 2019, 35, 55–63. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Li, R.; Jiang, R.; Zhang, L. Effects of high-intensity ultrasound on the microstructures and mechanical properties of ultra-large 2219 Al alloy ingot. Mater. Sci. Eng. A 2019, 763, 138154. [Google Scholar] [CrossRef]
- Kaibyshev, R.; Sitdikov, O.; Mazurina, I.; Lesuer, D.R. Deformation behavior of a 2219 Al alloy. Mater. Sci. Eng. A 2002, 334, 104–113. [Google Scholar] [CrossRef]
- Sellars, C.M.; McTegart, W.J. On the mechanism of hot deformation. Acta Metall. 1966, 14, 1136–1138. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Eng. Fract. Mech. 1983, 21, 541–548. [Google Scholar]
- Senthilkumar, V.; Balaji, A.; Arulkirubakaran, D. Application of constitutive and neural network models for prediction of high temperature flow behavior of Al/Mg based nanocomposite. Trans. Nonferrous Met. Soc. China 2013, 23, 1737–1750. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, X.M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 2011, 32, 1733–1759. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Y.; Gong, H.; Wang, K. Modification of constitutive model and evolution of activation energy on 2219 aluminum alloy during warm deformation process. Trans. Nonferrous Met. Soc. China 2019, 29, 448–459. [Google Scholar] [CrossRef]
- Jia, X.; Wang, Y.; Zhou, Y.; Cao, M. The study on forming property at high temperature and processing map of 2219 Aluminum alloy. Metals 2021, 11, 77. [Google Scholar] [CrossRef]
- Wang, H.; Qin, G.; Li, C. A modified Arrhenius constitutive model of 2219-O aluminum alloy based on hot compression with simulation verification. J. Mater. Res. Technol. 2022, 19, 3302–3320. [Google Scholar] [CrossRef]
- He, H.; Yi, Y.; Cui, J.; Huang, S. Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map. Vacuum 2019, 160, 293–323. [Google Scholar] [CrossRef]
- LI, S.; Chen, W.; Krishna, S.B.; Dong, W.J.; Chen, X. Flow Behavior of AA5005 Alloy at High Temperature and Low Strain Rate Based on Arrhenius-Type Equation and Back Propagation Artificial Neural Network (BP-ANN) Model. Materials 2022, 15, 3788. [Google Scholar] [CrossRef] [PubMed]
- Shayanpoor, A.A.; Rezaei Ashtiani, H.R. The phenomenological and physical constitutive analysis of hot fow behavior of Al/Cu bimetal composite. Appl. Phys. A 2022, 128, 636. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, J.; Liu, T.; Li, W.; Wan, Z.; Han, T.; Che, C.; Cheng, L. A modified Johnson–Cook model and microstructure evolution of as-extruded AA 2055 alloy during isothermal compression. Metals 2022, 12, 1787. [Google Scholar] [CrossRef]
- Xiao, Y.; He, Z. A Continuum Constitutive Model for a 7003-Aluminum Alloy Considering the Stress State and Strain Rate Effects. Iran. J. Sci. Technol. Trans. Mech. Eng. 2022, 128, 1–11. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, M. Progress in characterization methods for thermoplastic deforming constitutive models of Al–Li alloys: A review. J. Mater. Sci. 2020, 55, 9828–9847. [Google Scholar] [CrossRef]
- Shin, H.; Ju, Y.; Choi, M.K.; Ha, D.H. Flow Stress Description Characteristics of Some Constitutive Models at Wide Strain Rates and Temperatures. Technologies 2022, 10, 52. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Zhao, H. Microstructure evolution and mechanical responses of Al–Zn–Mg–Cu alloys during hot deformation process. J. Mater. Sci. 2021, 56, 13429–13478. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, X.; Wang, Z.; Tan, H.; Huang, W. Hot deformation induced microstructural evolution in local-heterogeneous wire plus arc additive manufactured 2219 Al alloy. J. Alloys Compd. 2021, 865, 158949. [Google Scholar] [CrossRef]
- Richardson, G.J.; Sellars, C.M.; Tegart, W. Recrystallization during creep of nickel. Acta Metall. 1996, 14, 1225–1236. [Google Scholar] [CrossRef]
- Narayana Murty, S.V.S.; Nageswara Rao, B.; Kashyap, B.P. Identification of flow instabilities in the processing maps of AISI 304 stainless steel. J. Mater. Process. Technol. 2005, 166, 268–278. [Google Scholar] [CrossRef]
Cu | Mn | Si | Zr | Fe | Zn | V | Ti | Al |
---|---|---|---|---|---|---|---|---|
5.8–6.8 | 0.2–0.4 | ≤0.2 | 0.1–0.25 | ≤0.3 | 0.1 | 0.05–0.15 | 0.02–0.1 | Bal. |
Number | Heating Temperature (T/K) | Strain Rate | Heating Rate (K/s) | Quenching Medium | Amount of Deformation |
---|---|---|---|---|---|
1–4 | 573 | 0.01, 0.1, 1, 10 | 5 | Water | 60% |
5–8 | 623 | ||||
9–12 | 673 | ||||
13–16 | 723 | ||||
17–20 | 773 |
Strain | Strain Rate | Temperature | Strain | Strain Rate | Temperature | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
573 | 623 | 673 | 723 | 773 | 573 | 623 | 673 | 723 | 773 | ||||
0.040 | 0.01 | 84.21 | 54.89 | 47.13 | 35.22 | 28.63 | 0.124 | 0.01 | 94.84 | 68.59 | 46.72 | 34.42 | 28.58 |
0.10 | 62.62 | 69.12 | 64.62 | 46.26 | 40.47 | 0.10 | 125.80 | 87.02 | 71.85 | 50.33 | 41.25 | ||
1 | 98.47 | 84.13 | 61.53 | 58.65 | 53.91 | 1 | 152.65 | 115.68 | 82.70 | 69.99 | 58.62 | ||
10 | 131.57 | 105.85 | 92.82 | 96.95 | 74.94 | 10 | 187.39 | 151.39 | 123.41 | 100.93 | 84.99 | ||
0.209 | 0.01 | 94.41 | 69.31 | 45.79 | 31.92 | 28.23 | 0.293 | 0.01 | 91.96 | 66.71 | 45.79 | 32.25 | 28.27 |
0.10 | 131.04 | 88.22 | 70.25 | 50.12 | 40.72 | 0.10 | 130.48 | 86.15 | 67.45 | 48.64 | 39.94 | ||
1 | 163.23 | 122.57 | 88.19 | 71.69 | 59.31 | 1 | 165.94 | 123.86 | 88.96 | 71.87 | 59.18 | ||
10 | 189.90 | 148.10 | 121.22 | 98.83 | 81.72 | 10 | 189.38 | 148.93 | 118.87 | 97.69 | 80.82 | ||
0.378 | 0.01 | 89.29 | 65.04 | 43.62 | 32.12 | 28.31 | 0.462 | 0.01 | 89.29 | 65.04 | 43.62 | 32.12 | 28.31 |
0.10 | 127.16 | 82.05 | 63.88 | 48.01 | 38.94 | 0.10 | 127.16 | 82.05 | 63.88 | 48.01 | 38.94 | ||
1 | 165.40 | 122.76 | 88.95 | 71.45 | 58.53 | 1 | 165.40 | 122.76 | 88.95 | 71.45 | 58.53 | ||
10 | 181.82 | 142.40 | 116.56 | 96.28 | 79.95 | 10 | 181.82 | 142.40 | 116.56 | 96.28 | 79.95 | ||
0.547 | 0.01 | 84.82 | 63.00 | 41.09 | 30.17 | 27.31 | 0.631 | 0.01 | 83.17 | 61.35 | 41.08 | 29.85 | 27.07 |
0.10 | 118.00 | 76.18 | 61.40 | 45.41 | 36.60 | 0.10 | 114.98 | 74.80 | 60.15 | 43.42 | 35.46 | ||
1 | 159.49 | 118.05 | 86.18 | 68.75 | 55.80 | 1 | 156.74 | 115.09 | 84.06 | 67.45 | 54.56 | ||
10 | 165.51 | 133.00 | 112.08 | 92.82 | 78.00 | 10 | 161.50 | 130.00 | 109.92 | 91.35 | 77.00 | ||
0.716 | 0.01 | 81.89 | 60.11 | 40.48 | 29.34 | 26.94 | 0.800 | 0.01 | 80.95 | 58.72 | 40.48 | 28.94 | 26.86 |
0.10 | 112.03 | 74.20 | 59.07 | 42.17 | 34.44 | 0.10 | 108.76 | 73.18 | 58.13 | 40.63 | 33.57 | ||
1 | 154.25 | 112.69 | 82.04 | 66.55 | 53.76 | 1 | 151.36 | 110.07 | 80.12 | 65.95 | 53.31 | ||
10 | 158.30 | 126.89 | 107.79 | 90.32 | 76.00 | 10 | 156.02 | 124.26 | 105.71 | 89.79 | 75.02 |
Parameters | Each Term of the Fifth-Degree Polynomial | |||||
---|---|---|---|---|---|---|
Constant | ||||||
1067.9341 | −2772.1319 | 2761.7040 | −1301.7920 | 279.1318 | 15.8880 | |
0.2801 | −0.6748 | 0.5739 | −0.1950 | 0.0209 | 0.0103 | |
−176.8387 | 421.8186 | −372.8122 | 148.9734 | −26.2920 | 7.4828 | |
12,129,779.65 | −30,821,120.08 | 29,740,283.34 | −13,393,248.5 | 2,706,665.33 | 104,677.46 |
Parameters | Each Term of the Fifth-Degree Polynomial | |||||
---|---|---|---|---|---|---|
Constant | ||||||
179.4716 | −443.8829 | 416.0393 | −183.7675 | 38.0742 | 5.1071 | |
−0.2187 | 0.5422 | −0.5083 | 0.2237 | −0.0462 | −0.0016 | |
0.0939 | −0.2319 | 0.2162 | −0.0931 | 0.0181 | −0.0009 | |
−0.0101 | 0.0269 | −0.0281 | 0.0139 | −0.0029 | 0.0002 | |
−0.0072 | 0.0181 | −0.0175 | 0.0080 | −0.0016 | 0.0001 | |
−64.5804 | 160.1938 | −149.8846 | 64.6076 | −12.4424 | 0.7181 | |
7.6524 | −20.1266 | 20.6121 | −9.8073 | 1.8902 | −0.1290 | |
5.3234 | −13.4004 | 12.8984 | −5.7884 | 1.1455 | −0.0769 |
T/K | Strain Rate (s−1) | |||
---|---|---|---|---|
0.01 | 0.1 | 1 | 10 | |
573 | (a) Average size: 25 um | (b) Average size: 15 um | (c) Average size: 16 um | (d) Average size: 25 um |
623 | (e) average size: 15 um | (f) average size: 15 um | (g) average size: 18 um | (h) average size: 20 um |
673 | (h) average size: 25 um | (i) average size: 16 um | (j) average size: 18 um | (k) average size: 22 um |
723 | (l) average size: 20 um | (m) average size: 14 um | (n) average size: 15 um | (o) average size: 23 um |
773 | (p) average size: 25 um | (q) average size: 15 um | (r) average size: 20 um | (s) average size: 30 um |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xiao, G.; Zhang, J. A New, Precise Constitutive Model and Thermal Processing Map Based on the Hot Deformation Behavior of 2219 Aluminum Alloy. Crystals 2023, 13, 732. https://doi.org/10.3390/cryst13050732
Wang J, Xiao G, Zhang J. A New, Precise Constitutive Model and Thermal Processing Map Based on the Hot Deformation Behavior of 2219 Aluminum Alloy. Crystals. 2023; 13(5):732. https://doi.org/10.3390/cryst13050732
Chicago/Turabian StyleWang, Jing, Guiqian Xiao, and Jiansheng Zhang. 2023. "A New, Precise Constitutive Model and Thermal Processing Map Based on the Hot Deformation Behavior of 2219 Aluminum Alloy" Crystals 13, no. 5: 732. https://doi.org/10.3390/cryst13050732
APA StyleWang, J., Xiao, G., & Zhang, J. (2023). A New, Precise Constitutive Model and Thermal Processing Map Based on the Hot Deformation Behavior of 2219 Aluminum Alloy. Crystals, 13(5), 732. https://doi.org/10.3390/cryst13050732