Aluminum Phosphide van der Waals Bilayers with Tunable Optoelectronic Properties under Biaxial Strain
Abstract
1. Introduction
2. Methods
3. Results and Discussions
3.1. Structural Properties
3.2. Electronic Properties
3.3. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect inatomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, C.; Zhang, S.; Hu, X.; Zhang, K.; Zhou, W.; Guo, S.; Xu, F.; Zeng, H. Ultrathin Bismuth Nanosheets for Stable Na-Ion Batteries: Clarification of Structure and Phase Transition by in Situ Observation. Nano Lett. 2019, 19, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Ashton, M.; Mathew, K.; Hennig, R.G.; Sinnott, S.B. Predicted Surface Composition and Thermodynamic Stability of MXenes in Solution. J. Phys. Chem. C 2016, 120, 3550–3556. [Google Scholar] [CrossRef]
- Ashton, M.; Paul, J.; Sinnott, S.B.; Hennig, R.G. Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials. Phys. Rev. Lett. 2017, 118, 10610. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, N.; Tao, H.; Yan, C.; Huang, J.; Liu, T.; Robertson, A.W.; Texter, J.; Wang, J.; Sun, Z.Y. Exfoliation of stable 2D black phosphorus for device fabrication. Chem. Mater. 2017, 29, 6445–6456. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, S.; Ma, Y.; Chen, Z.; Wang, Y.; Gao, H.; Herrero, J.G.; Ares, P.; Zamora, F.; Zhou, Z.; et al. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982–1021. [Google Scholar] [CrossRef]
- Niu, T.; Zhou, W.; Zhou, D.; Hu, X.; Zhang, S.; Zhang, K.; Zhou, M.; Fuchs, H.; Zeng, H. Modulating Epitaxial Atomic Structure of Antimonene through Interface Design. Adv. Mater. 2019, 31, 1902606. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Niu, H. Half-metallic ferromagnetism in Cr-doped AlP—Density functional calculations. Solid State Commun. 2008, 145, 590–593. [Google Scholar] [CrossRef]
- Zhang, Y. Possible room temperature ferromagnetism in Ca-doped AlP: First-principles study. J. Magn. Magn. Mater. 2013, 342, 35–37. [Google Scholar] [CrossRef]
- Liang, P.; Liu, Y.; Hu, X.; Wang, L.; Dong, Q.; Jing, X. The half metallic property and electronic structure of the Ti doped AlP systems investigated by first principle. J. Magn. Magn. Mater. 2014, 355, 295–299. [Google Scholar] [CrossRef]
- Yan, Z.; Wu, H.; Zheng, R. Ferromagnetism in alkali-metal-doped AlP: An ab initio study. Comput. Mater. Sci. 2015, 99, 16–20. [Google Scholar] [CrossRef]
- Boutaleb, M.; Doumi, B.; Tadjer, A.; Sayede, A. Half-metallic ferromagnetic properties of Cr- and V-doped AlP semiconductors. J. Magn. Magn. Mater. 2016, 397, 132–138. [Google Scholar] [CrossRef]
- Wang, S.; Fan, X.; An, Y. Room-temperature ferromagnetism in alkaline-earth-metal doped AlP: First-principle calculations. Comput. Mater. Sci. 2018, 142, 338–345. [Google Scholar] [CrossRef]
- Chen, Y.; Xing, Y.; Jiang, A.; Zhou, C.; Lu, S. Enhanced optical absorption in visible range in Mn doped AlP: A density functional theory study. J. Magn. Magn. Mater. 2018, 457, 13–16. [Google Scholar] [CrossRef]
- Sun, J. Stability and Electronic Structures of Single-Walled Alp Nanotubes by First Principle Study. Procedia Eng. 2011, 15, 5062–5066. [Google Scholar]
- Tong, C.; Zhang, H.; Zhang, Y.; Liu, H.; Liu, L. New manifold two-dimensional single-layer structures of zinc-blende compounds. J. Mater. Chem. A 2014, 2, 17971–17978. [Google Scholar] [CrossRef]
- Liu, C.; Teng, Z.; Ye, X.; Yan, X. Two-dimensional tetragonal AlP monolayer: Strain-tunable direct–indirect band-gap and semiconductor–metal transitions. J. Mater. Chem. C 2017, 5, 5999–6004. [Google Scholar] [CrossRef]
- Yang, X.; Mao, C.; Hu, Y.; Cao, H.; Zhang, Y.; Zhao, D.; Chen, Z.; Xie, M. Two-dimensional aluminum phosphide semiconductor with tunable direct band gap for nanoelectricapplications. RSC Adv. 2020, 10, 25170–25176. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 207–8215. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integration. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef]
- Mao, Y.; Xu, C.; Yuan, J.; Zhao, H. Effect of stacking order and in-plane strain on the electronic properties of bilayer GeSe. Phys. Chem. Chem. Phys. 2018, 20, 6929–6935. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, S.; Wang, J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C.; Lerach, J.; Bojan, V. Correction to manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2016, 16, 2125. [Google Scholar] [CrossRef]
- Qu, H.; Zhou, W.; Guo, S.; Li, Z.; Wang, Y.; Zhang, S. Ballistic Quantum Transport of Sub-10 nm 2D Sb2Te2Se Transistors. Adv. Bioelectron. Mater. 2019, 5, 1900813. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, Y.; Hu, Z.; Cai, B.; Zeng, H. Hydrogenated arsenenes as planar magnet and Dirac material. Appl. Phys. Lett. 2015, 107, 022102. [Google Scholar] [CrossRef]
- Choi, S.M.; Jhi, S.H.; Son, Y.W. Effects of strain on electronic properties of graphene. Phys. Rev. B 2010, 81, 081407. [Google Scholar] [CrossRef]











| Model | , (Å) | λ | ||||
|---|---|---|---|---|---|---|
| V-AlP monolayer | = 3.81, = 5.68 | 2.32 | 2.2 | --- | −5.12 | 2.62 |
| T-AlP monolayer | = = 3.91 | 2.43 | 2.9 | --- | −5.35 | 0.97 |
| V-AlP bilayer | = 3.81, = 5.68 | 2.34 | 6.2 | 1.6 | −5.00 | 1.86 |
| T-AlP bilayer | = = 3.89 | 2.27 | 8.8 | 3.6 | −4.85 | 1.29 |
| T/V-AlP bilayer | = 3.85, = 28.4 | 2.37 | 8.6 | 3.4 | −4.94 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, C.; Ni, H.; Qian, L.; Hu, Y.; Huang, H. Aluminum Phosphide van der Waals Bilayers with Tunable Optoelectronic Properties under Biaxial Strain. Crystals 2023, 13, 597. https://doi.org/10.3390/cryst13040597
Mao C, Ni H, Qian L, Hu Y, Huang H. Aluminum Phosphide van der Waals Bilayers with Tunable Optoelectronic Properties under Biaxial Strain. Crystals. 2023; 13(4):597. https://doi.org/10.3390/cryst13040597
Chicago/Turabian StyleMao, Caixia, Hao Ni, Libing Qian, Yonghong Hu, and Haiming Huang. 2023. "Aluminum Phosphide van der Waals Bilayers with Tunable Optoelectronic Properties under Biaxial Strain" Crystals 13, no. 4: 597. https://doi.org/10.3390/cryst13040597
APA StyleMao, C., Ni, H., Qian, L., Hu, Y., & Huang, H. (2023). Aluminum Phosphide van der Waals Bilayers with Tunable Optoelectronic Properties under Biaxial Strain. Crystals, 13(4), 597. https://doi.org/10.3390/cryst13040597

