A Study of the Temperature-Dependent Surface and Upper Critical Magnetic Fields in KFeSe and LaSrCuO Superconductors
Abstract
1. Introduction
2. Model and Calculations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kittel, C.; McEuen, P. Introduction to Solid State Physics; John Wiley & Sons, Ltd.: New York, NY, USA, 2018; pp. 324–326. [Google Scholar]
- Saint-James, D.; Gennes, P.D. Onset of superconductivity in decreasing fields. Phys. Lett. 1963, 7, 306–308. [Google Scholar] [CrossRef]
- Fournais, S.; Helffer, B. On the third critical field in Ginzburg-Landau theory. Commun. Math. Phys. 2006, 266, 153–196. [Google Scholar] [CrossRef]
- Abrikosov, A.A. Concerning surface superconductivity in strong magnetic fields. Sov. Phys. JETP 1965, 20, 480. [Google Scholar]
- De Gennes, P.G. Superconductivity of Metals and Alloys; W.A. Benjamin. Inc.: New York, NY, USA, 1966. [Google Scholar]
- Gor’kov, L.P. Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity. Sov. Phys. JETP 1959, 9, 1364–1367. [Google Scholar]
- Bednorz, J.G.; Müller, K.A. Perovskite–type oxides—The new approach to high-Tc superconductivity. Rev. Mod. Phys. 1988, 60, 585. [Google Scholar] [CrossRef]
- Wu, M.K.; Ashburn, J.R.; Torng, C.J.; Hor, P.H.; Meng, R.L.; Gao, L.; Huang, Z.J.; Wang, Y.Q.; Chu, C.W. Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure. Phys. Rev. Lett. 1987, 58, 908. [Google Scholar] [CrossRef]
- Felner, I.; Tsindlekht, M.I.; Drachuck, G.; Keren, A. Anisotropy of the upper critical fields and the paramagnetic Meissner effect in La1.85Sr0.15CuO4 single crystals. J. Phys. Condens. Matter 2013, 25, 065702. [Google Scholar] [CrossRef][Green Version]
- Kiehn, M. Growth and Characterization of LSCO Crystals. Bachelor’s Thesis, Faculty of Science, University of Cipenhagen, Copenhagen, Denmark, 2014. [Google Scholar]
- Marin, C.; Charvolin, T.; Braithwaite, D.; Calemczuk, R. Properties of a large La1.92 Sr0.08 CuO(4+δ) single crystal grown by the travelling-solvent floating-zone method. Physica C 1999, 320, 197–205. [Google Scholar] [CrossRef]
- Voloshyna, O.; Romaka, V.V.; Karmakar, K.; Seiro, S.; Maljuk, A.; Büchner, B. TSFZ Growth of Eu-Substituted Large-Size LSCO Crystals. Crystals 2022, 12, 998. [Google Scholar] [CrossRef]
- Grissonnanche, G.; Legros, A.; Badoux, S.; Lefrancois, E.; Zatko, V.; Lizaire, M.; Laliberte, F.; Gourgout, A.; Zhou, J.S.; Pyon, S.; et al. Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors. Nature 2019, 571, 376–380. [Google Scholar] [CrossRef]
- Boulanger, M.E.; Grissonnanche, G.; Badoux, S.; Allaire, A.; Lefrancois, E.; Legros, A.; Gourgout, A.; Dion, M.; Wang, C.H.; Chen, X.H.; et al. Thermal Hall conductivity in the cuprate Mott insulators Nd2CuO4 and Sr2CuO2Cl2. Nat. Commun. 2020, 11, 5325. [Google Scholar] [CrossRef] [PubMed]
- Grissonnanche, G.; Thériault, S.; Gourgout, A.; Boulanger, M.E.; Lefrançois, E.; Ataei, A.; Laliberte, F.; Dion, M.; Zhou, J.S.; Pyon, S.; et al. Chiral phonons in the pseudogap phase of cuprates. Nat. Phys. 2020, 16, 1108–1111. [Google Scholar] [CrossRef]
- Radaelli, P.G.; Hinks, D.G.; Mitchell, A.W.; Hunter, B.A.; Wagner, J.L.; Dabrowski, B.; Vandervoort, K.G.; Viswanathan, H.K.; Jorgensen, J.D. Structural and superconducting properties of La2−xSrxCuO4 as a function of Sr content. Phys. Rev. B 1994, 49, 4163. [Google Scholar] [CrossRef]
- Braden, M.; Heger, G.; Schweiss, P.; Fisk, Z.; Gamayunov, K.; Tanaka, I.; Kojima, H. Characterization and structural analysis of twinned La2−xSrxCuO4±δ crystals by neutron diffraction. Physica C 1992, 191, 455–468. [Google Scholar] [CrossRef]
- Frison, R.; Kuspert, J.; Wang, Q.; Ivashko, O.; Zimmermann, M.V.; Bucher, D.; Larsen, J.; Niedermayer, C.; Janoschek, M.; Kurosawa, T.; et al. Crystal symmetry of stripe-ordered La1.88Sr0.12CuO4. Phys. Rev. B 2022, 105, 224113. [Google Scholar] [CrossRef]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-based layered superconductor La[O1−x Fx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, H.; Fang, L.; Mu, G.; Wen, H.H. Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor LaFeAsO0.9F0.1−δ. Supercond. Sci. Technol. 2008, 21, 105001. [Google Scholar] [CrossRef]
- Khlyustikov, I.N. Critical magnetic field of surface superconductivity in lead. J. Exp. Theor. Phys. 2011, 113, 1032–1034. [Google Scholar] [CrossRef]
- Tsindlekht, M.I.; Felner, I.; Zhang, M.; Wang, A.F.; Chen, X.H. Superconducting critical fields of single-crystalline K0.73Fe1.68Se2. Phys. Rev. B 2011, 84, 052503. [Google Scholar] [CrossRef]
- Guo, J.; Jin, S.; Wang, G.; Wang, S.; Zhu, K.; Zhou, T.; He, M.; Chen, X. Superconductivity in the iron selenide KxFe2Se2 (0 ≤ x ≤ 1.0). Phys. Rev. B 2010, 82, 180520. [Google Scholar] [CrossRef]
- Ye, F.; Chi, S.; Bao, W.; Wang, X.F.; Ying, J.J.; Chen, X.H.; Wang, H.D.; Dong, C.H.; Fang, M. Common crystalline and magnetic structure of superconducting A2Fe4Se5 (A= K, Rb, Cs, Tl) single crystals measured using neutron diffraction. Phys. Rev. Lett. 2011, 107, 137003. [Google Scholar] [CrossRef] [PubMed]
- Rotter, M.; Tegel, M.; Johrendt, D. Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2. Phys. Rev. Lett. 2008, 101, 107006. [Google Scholar] [CrossRef] [PubMed]
- Sasmal, K.; Lv, B.; Lorenz, B.; Guloy, A.M.; Chen, F.; Xue, Y.Y.; Chu, C.W. Superconducting Fe-based compounds (A1−xSrx) Fe2As2 with A = K and Cs with transition temperatures up to 37 K. Phys. Rev. Lett. 2008, 101, 107007. [Google Scholar] [CrossRef]
- Wu, G.; Chen, T.; Wu, T.; Xie, Y.J.; Yan, Y.J.; Liu, R.H.; Wang, X.F. Different resistivity response to spin density wave and superconductivity at 20 K in Ca1-xNaxFe2As2. Phys. Condens. Matter 2008, 20, 422201. [Google Scholar] [CrossRef]
- Shein, I.R.; Ivanovskii, A.L. Structural, electronic properties and Fermi surface of ThCr2Si2-type tetragonal KFe2S2, KFe2Se2 and KFe2Te2 phases as parent systems of new ternary iron-chalcogenide superconductors. J. Supercond. Nov. Magn. 2011, 24, 2215–2221. [Google Scholar] [CrossRef]
- Askerzade, I.N. Surface critical magnetic field Hc3 (T) of a bulk superconductor MgB2 using two-band Ginzburg-Landau theory. Pramana 2003, 61, 611–616. [Google Scholar] [CrossRef]
- Meakniti, S.; Changjan, A.; Udomsamuthirun, P. The study on surface critical magnetic field of a layered magnetic superconductors. Adv. Mater. 2014, 979, 224–227. [Google Scholar] [CrossRef]
- Changjan, A.; Meakniti, S.; Udomsamuthirun, P. The temperature-dependent surface critical magnetic field (HC3) of magnetic superconductors: Applied to lead bismuth (Pb82Bi18) superconductors. J. Phys. Chem. Solids 2017, 107, 32–35. [Google Scholar] [CrossRef]
- Changjan, A.; Udonsamuthirun, P. The critical magnetic field of anisotropic two-band magnetic superconductors. Solid State Commun. 2011, 151, 988–992. [Google Scholar] [CrossRef]
- Hampshire, D.P. Ferromagnetic and antiferromagnetic superconductivity. Physica C 1998, 1, 1–11. [Google Scholar] [CrossRef]
- Hampshire, D.P. The non-hexagonal flux-line lattice in superconductors. J. Phys. Condens. Matter 2001, 13, 6095. [Google Scholar] [CrossRef][Green Version]
- Chen, L.; Zuo, J.; Lu, Y.; Houng, H. Two-band calculations on the upper critical field of superconductor NbSe2. Physica C 2011, 417, 1591–1594. [Google Scholar] [CrossRef]
- Shaenenko, A.A.; Milosevic, M.V.; Peeters, F.M.; Vagov, A.V. Extended Ginzburg-Landau formalism for two–band superconductors. Phy. Rev. Lett. 2011, 106, 047005. [Google Scholar] [CrossRef]
- Changjan, A.; Udomsamuthirun, P. Critical temperature of magnetic superconductors by two-band Ginzburg–Landau approach. Songklanakarin J. Sci. Technol. 2013, 35, 611–614. [Google Scholar]
- Haas, S.; Maki, K. Anisotropic s-wave superconductivity in MgB2. Phys. Rev. B 2001, 65, 020502. [Google Scholar] [CrossRef]
- Posazhennikova, E.; Dahm, T.; Maki, K. Anisotropic s-wave superconductivity: Comparison with experiments on MgB2 single crystals. Europhy. Lett. 2002, 60, 1834281. [Google Scholar] [CrossRef]
- Voelker, K.; Anisimov, V.I.; Rice, T.M. Acoustic plasmons in MgB2. Cond-Mat.Supr-Con. 2001, 1, 0103082. [Google Scholar] [CrossRef]
- Ketterson, J.B.; Song, S.N. Superconductivity; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Askerzade, I.N.; Gencer, A.; Güçlü, N.; Kilic, A. Two-band Ginzburg–Landau theory for the lower critical field Hc1 in MgB2. Supercond. Sci. Technol. 2022, 15, L17. [Google Scholar] [CrossRef]
- Udomsamuthirun, P.; Changjan, A.; Kumvongsa, C.; Yoksan, S. Hc2 of anisotropy two-band superconductors by Ginzburg–Landau approach. Physica C 2006, 434, 62–66. [Google Scholar] [CrossRef]
- Wu, M.K.; Hsu, F.C.; Yeh, K.W.; Huang, T.W.; Luo, J.Y.; Wang, M.J.; Chang, H.H.; Chen, T.K.; Rao, S.M.; Mok, B.H.; et al. The development of the superconducting PbO–type β–FeSe and related compounds. Physica C 2009, 469, 340–349. [Google Scholar] [CrossRef]
- Luo, X.G.; Wang, X.F.; Ying, J.J.; Yan, Y.J.; Li, Z.Y.; Zhang, M.; Wang, A.F.; Cheng, P.; Xiang, Z.J.; Ye, G.J. Crystal structure, physical properties and superconductivity in AxFe2Se2 single crystals. New J. Phys. 2011, 13, 053011. [Google Scholar] [CrossRef]
- Bao, W.; Huang, Q.Z.; Chen, G.F.; Wang, D.M.; He, J.B.; Qiu, Y.M. A novel large moment antiferromagnetic order in K0.8 Fe1.6Se2 superconductor. Chin. Phys. Lett. 2011, 28, 086104. [Google Scholar] [CrossRef]
- Liu, R.H.; Luo, X.G.; Zhang, M.; Wang, A.F.; Ying, J.J.; Wang, X.F.; Yan, Y.J.; Xiang, Z.J.; Cheng, P.; Ye, G.J. Coexistence of superconductivity and antiferromagnetism in single crystals A0.8Fe2−ySe2 (A=K, Rb, Cs, Tl/K and Tl/Rb): Evidence from magnetization and resistivity. Europhys. Lett. 2011, 94, 27008. [Google Scholar] [CrossRef]
- Mun, E.D.; Altarawneh, M.M.; Mielke, C.H.; Zapf, V.S.; Hu, R.; Budko, S.L.; Canfield, P.C. Anisotropic Hc2 of K0.8 Fe1.76Se2 determined up to 60 T. Phys. Rev. B 2011, 83, 100514. [Google Scholar] [CrossRef]
- Badoux, S.; Afshar, S.A.A.; Michon, B.; Ouellet, A.; Fortier, S.; LeBoeuf, D.; Croft, T.P.; Lester, C.; Hayden, S.M.; Takagi, H.; et al. Critical doping for the onset of Fermi-surface reconstruction by charge-density-wave order in the cuprate superconductor La2−xSrxCuO4. Phys. Rev. X 2016, 6, 021004. [Google Scholar] [CrossRef]
- Drachuck, G. 2D Superconductivity in La2-x SrxCuO4 Single Crystals. Master’s Thesis, Science in Physics, Technion-Israel Institute of Technology, Haifa, Israel, 2011. [Google Scholar]
- Orenstein, J.; Millis, A.J. Advances in the physics of high-temperature superconductivity. Science 2000, 288, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, H.; Katsumata, K.; Torikai, E.; Nagamine, K. Coexistence of magnetic ordering and superconductivity in La–Sr–Cu–O system revealed by positive muon spin relaxation. Solid State Commun. 1988, 67, 1191–1195. [Google Scholar] [CrossRef]
- Varshney, D.; Singh, R.K.; Shah, S. Anisotropic superconducting state parameters of Nd–Ce–CuO and La–Sr–CuO systems. J. Supercond. 1996, 9, 319–324. [Google Scholar] [CrossRef]
- Talantsev, E.F.; Mataira, R.C.; Crump, W.P. Classifying superconductivity in Moiré graphene superlattices. Sci. Rep. 2020, 10, 212. [Google Scholar] [CrossRef]
- Gorter, C.J.; Casimir, H. On supraconductivity I. Physica C 1934, 1, 306–320. [Google Scholar] [CrossRef]
- Poole, C.P., Jr.; Creswick, R.J.; Farach, H.A.; Prozorov, R. Superconductivity, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Talantsev, E.F.; Crump, W.P.; Island, J.O.; Xing, Y.; Sun, Y.; Wang, J.; Tallon, J.L. On the origin of critical temperature enhancement in atomically thin superconductors. 2D Mater. 2017, 4, 025072. [Google Scholar] [CrossRef]
- Pal, B.; Joshi, B.P.; Chakraborti, H.; Jain, A.K.; Barick, B.K.; Ghosh, K.; Bhunia, S.; Laha, A.; Dhar, S.; Gupta, K. Experimental evidence of a very thin superconducting layer in epitaxial indium nitride. Supercond. Sci. Technol. 2019, 32, 015009. [Google Scholar] [CrossRef]
- Helfand, E.; Werthamer, N.R. Temperature and purity dependence of the superconducting critical field, Hc2. II. Phys. Rev. 1966, 147, 288–294. [Google Scholar] [CrossRef]
- Werthamer, N.R.; Helfand, E.; Hohenberg, P.C. Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Phys. Rev. 1966, 147, 295–302. [Google Scholar] [CrossRef]
- Baumgartner, T.; Eisterer, M.; Weber, H.W.; Flükiger, R.; Scheuerlein, C.; Bottura, L. Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires. Supercond. Sci. Technol. 2013, 27, 015005. [Google Scholar] [CrossRef]
- Jones, C.K.; Hulm, J.K.; Chandrasekhar, B.S. Upper critical field of solid solution alloys of the transition elements. Rev. Mod. Phys. 1964, 36, 74–76. [Google Scholar] [CrossRef]
- Gor’kov, L.P. The critical supercooling field in superconductivity theory. Sov. Phys.-JETP 1960, 10, 593–599. [Google Scholar]
- Talantsev, E.F. Classifying hydrogen-rich superconductors. Mater. Res. Express 2019, 6, 106002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meakniti, S.; Udomsamuthirun, P.; Changjan, A.; Chanilkul, G.; Kruaehong, T. A Study of the Temperature-Dependent Surface and Upper Critical Magnetic Fields in KFeSe and LaSrCuO Superconductors. Crystals 2023, 13, 526. https://doi.org/10.3390/cryst13030526
Meakniti S, Udomsamuthirun P, Changjan A, Chanilkul G, Kruaehong T. A Study of the Temperature-Dependent Surface and Upper Critical Magnetic Fields in KFeSe and LaSrCuO Superconductors. Crystals. 2023; 13(3):526. https://doi.org/10.3390/cryst13030526
Chicago/Turabian StyleMeakniti, Suppanyou, Pongkaew Udomsamuthirun, Arpapong Changjan, Grittichon Chanilkul, and Thitipong Kruaehong. 2023. "A Study of the Temperature-Dependent Surface and Upper Critical Magnetic Fields in KFeSe and LaSrCuO Superconductors" Crystals 13, no. 3: 526. https://doi.org/10.3390/cryst13030526
APA StyleMeakniti, S., Udomsamuthirun, P., Changjan, A., Chanilkul, G., & Kruaehong, T. (2023). A Study of the Temperature-Dependent Surface and Upper Critical Magnetic Fields in KFeSe and LaSrCuO Superconductors. Crystals, 13(3), 526. https://doi.org/10.3390/cryst13030526