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Abstract: The critical magnetic field is one of the most interesting properties of superconductors.
Thus, this study aimed to investigate the surface and upper critical magnetic fields of superconductors
in Fe-based and cuprate superconductors as KFeSe and LaSrCuO superconductors, respectively. The
anisotropic two-band Ginzburg–Landau method was used to generate the analytic equation. The
analytics were shown for the simplified equation so that a second-order polynomial temperature-
dependent equation could be applied and fitted to the experimental results of KFeSe and LaSrCuO
superconductors. After that, numerical calculations were applied to find the shape of the Fermi
surface, which is an important component within the band structure. It was found that the anisotropy
of the Fermi surface for each band structure was affected by the upper critical magnetic field and
the surface critical magnetic field to the upper critical magnetic field of the superconductors. The
second-order polynomial temperature-dependent model can be applied to other superconductors to
predict the surface and upper critical magnetic fields.

Keywords: surface critical magnetic field; upper critical magnetic field; Ginzburg–Landau theory

1. Introduction

A superconductor is a material that has no resistance at a low temperature, known as
the critical temperature. It is influenced by three factors, including the critical temperature,
critical current density, and critical magnetic field that can convert a superconducting
state to a normal state. There are three kinds of critical magnetic fields: lower, upper, and
surface. The maximum surface magnetic field to convert a superconductor into a normal
conductor has a greater value than the upper critical magnetic field, which is known as the
surface critical magnetic field [1–3]. It was intended that the investigation of the surface
critical magnetic field properties would offer recommendations for producing thin film
superconductors. It was intended that the investigation of the surface critical magnetic
field properties would offer recommendations for producing thin film superconductors
and make superconductors more efficient. Superconductors fall into two major categories,
namely type I and type II superconductor [1]. For type I superconductors, the superconduc-
tors lose superconductivity and convert to normal conductors when the external magnetic
fields reach the critical level. Type II superconductors have two critical magnetic fields,
called the lower critical magnetic field (Hc1) and the upper critical magnetic field (Hc2).
However, the critical magnetic field of isotropic one-band superconductors near the surface
of materials is greater than the upper critical magnetic field of bulk superconductors. The
superconductors lose superconductivity but remain at the surface when the external mag-
netic fields reach the upper critical magnetic field. They will then lose superconductivity
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and convert to normal conductors when the external magnetic fields reach the surface
critical magnetic field (Hc3) [2,3]. In alloy superconductors, the calculation of the Ginzburg–
Landau approach was done and applied to the alloy superconductor. A minor effect of
the thickness of the film on the surface critical field was found to be Hc3 ≈ 1.7Hc2 [4].
However, the derivation of this relation can be found to be dependent on many parameters
such as temperature dependence and Ginzburg–Landau parameters (κ) [5,6]. Cuprate
superconductors with critical temperatures as high as 35 K have been discovered [7]. When
pressure is added to the system, the critical temperature of the cuprate superconductor rises
to 50 K, as measured by the research group [8]; when Y atoms replace La atoms (LaBaCuO
to YBaCuO), the temperature climbs to 92 K. Regardless of a high critical temperature,
however, this category of superconductors has a low critical magnetic field. In LaSrCuO
superconductors, the anisotropy of critical field was found; Hc3

Hc2
= 1.8 for c-crystal and

Hc3
Hc2

= 4.0 for a-crystal [9]. LaSrCuO, also known as LSCO, is a complex oxide compound
made up of the elements lanthanum (La), strontium (Sr), copper (Cu), and oxygen (O). It
belongs to the family of high-temperature superconducting materials known as cuprates.
To ensure a surplus amount of 3 mol% CuO and x mol% Sr ions, the proportion of CuO and
Sr ions to the required amount in a full reaction of La2SrxCuO4 was adjusted. This resulted
in the reaction scheme 1.03CuO + (2− x)/2 La2−xO3 + x SrxCO3 → La2−xSrxCuO4 [10].
LSCO can be grown as a single crystal using techniques such as the floating zone method
or the flux method [11]. Single crystals of LSCO typically have a layered structure, with
layers of CuO2 planes separated by layers of LaO or SrO. The CuO2 planes are critical
to the superconducting properties of the material. LSCO exhibits superconductivity at
temperatures below about 40 K, which LaSrCuO has a critical temperature of about 35 K [9].
The properties of LSCO can be tuned by varying the composition or doping the material
with other elements. Through extensive research, it has been determined that the ideal
level of doping with Sr2+ ions is x = 0.16, which produces the highest Tc. The precise
amount of doping and the range of x = 0.10 to x = 0.18 have been thoroughly investigated
in reference [10]. The crystal structure of LaSrCuO belongs to the tetragonal system with
space group I4/mmm [12]. The thermal Hall effect found in La2−xSrxCuO4 [13–15] has
been linked to chiral phonon excitations that require specific crystal structures. Although
the orthorhombic space group Bmab (space group 64) provides a good average descrip-
tion of the La2−xSrxCuO4 structure [16,17], there is growing evidence of subtle structural
distortions in both doped and undoped samples. The available literature suggests that
charge stripe order in LSCO is indicated in tetragonal notation, while deviations from space
group 64 are best described in orthorhombic notation [18]. Iron-based superconductors
have been discovered [19]. It is highly fascinating due to its exceptionally high upper criti-
cal magnetic field and its use in a solid-state reaction to create LaFeAsO superconductors.
The upper critical magnetic field was found to be as high as 55 T [20]. The Hc3

Hc2
of lead was

measured and found to have different values in the vicinity of the critical temperature [21].
Recently, for Fe-based superconductors, an experimental investigation on the magnetic
characteristics of the K0.73Fe1.68Se2 superconductor was carried out, in which the result of
the ratio Hc3 to Hc2 was about 4.4 [22]. The Fe-based superconductors AFeCh, where A is
an alkali metal (e.g., K) and Ch is a chalcogen (e.g., Se), were discovered by [23,24] and are
referred to as iron chalcogenide superconductors (FeCh). They have the same structure
as the iron-pnictide 122 system [25–27]. The single crystalline KFeSe materials consist of
layers of FeSe and K atoms stacked on top of each other in a body-centered tetragonal
structure with space group I4/mmm. At Neel temperatures around TN ≈ 140–150 K
and 520–550 K, the Fe-Se layers in the material display antiferromagnetic order in three
dimensions, with Fe2+ moments oriented along the c axis. Fe-Se based materials undergo
a structural transition during their magnetic transition, where for Fe-Ch materials, the
transition is from a tetragonal (I4/mmm) to another tetragonal structure (I4/m). These
materials can exhibit superconductivity at a critical temperature of around 30–33 K while
retaining antiferromagnetism [22]. The crystal structure of KFe2Se2 can be represented as a
stacking of K sheets and [Fe2Se2] blocks. Specifically, the K atoms are located at 2a (0, 0, 0),
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Fe atoms at 4d (0, 1/2, 1/4), and Ch (Se) atoms at 4e (0, 0, zCh), where zCh represents the
internal coordinate. The structural parameters of KFe2Se2 include lattice constants (a, c in
angstrom unit), internal coordinate (zCh), bond length (d in angstrom unit), bond angles (Θ
in degrees unit), and anion height (∆z in angstrom unit), which have been presented by. The
KFe2Se2 is characterized by its energy bands, Fermi surfaces, and densities of states (DOS).
The near-Fermi bands display a complex “mixed” nature, consisting of both quasi-flat
bands along the Г-Z axis and a set of highly dispersive bands that intersect the Fermi
level [28]. Overall, the crystal structure of KFeSe is characterized by its layered structure,
with the FeSe layers separated by the K atoms. This layered structure is important for its
electronic properties, such as high-temperature superconductivity. From the theoretical
view, the two-band Ginzburg–Landau (GL) theory was used to determine the surface
critical magnetic field of the MgB2 superconductor [29]. The two-band GL free energy was
taken by the minimization process and a ratio of Hc3/Hc2 was found with the same as a
well-known formula, Hc3(T) = 1.66Hc2(T). In 2014, Meakniti et al. [30] used a one-band
Ginzburg–Landau method to study the effects of diamagnetism, ferromagnetism, antiferro-
magnetism, and paramagnetism on the surface critical magnetic field of a layered magnetic
superconductor. They discovered that paramagnetism and antiferromagnetism from Hc3 to
Hc2 were nearly equivalent to 1.66. In 2017, Changjan and Udomsamuthirun [31] studied
the four temperature-dependent models of the surface critical magnetic field of isotropic
single-band superconductors applied to lead-bismuth superconductors.

In this research, the surface critical magnetic fields and upper critical magnetic fields
of two-band magnetic superconductors were conducted, which included temperature
and anisotropy-dependent, concentrating on the second-order polynomial temperature
functions as well as the anisotropic functions by Hass and Maki, and Posazhennikova. The
numerical calculation by the iteration method was used for fitting the theoretical parameters
and experimental parameters. The application of temperature and anisotropy dependence
was made to describe the experimental data of iron-based and cuprate superconductors as
KFeSe and LaSrCuO superconductors, respectively.

2. Model and Calculations

This study concentrated on the anisotropic dependence and temperature dependence
of two-band magnetic superconductors [32–34]. The two-band Ginzburg–Landau free-
energy function with two order parameters on ψ1 and ψ2 can be written as

Fsc[ψ1, ψ2] =
∫

d3r
(

F1 + F2 + F12 + γ0 + γ1B + γ2
B2

2µ0

)
(1)

Fi(i=1,2) =
1

2mi

∣∣∣∣(−i}∇− 2e
⇀
A
)

ψi

∣∣∣∣2〈 f 2
i (k̂)

〉
+ αi(T)ψ2

i

〈
f 2
i (k̂)

〉
+

1
2

βiψ
4
i

〈
f 2
i (k̂)

〉
(2)

F12 = ε
(
ψ∗1 ψ2 + c.c.

)〈
f1(k̂) f2(k̂)

〉
+ε1

{(
i}∇− 2e

⇀
A
)

ψ∗1

(
−i}∇− 2e

⇀
A
)

ψ2 + c.c.
}〈

f1(k̂) f2(k̂)
〉 (3)

where Fi represents the individual bands’ anisotropic free energies, F12 represents the inter-
action between the first and second band, mi stands for the carriers’ effective mass, ψi is
the order parameter. The coefficients αi and βi denote the features that are temperature-
dependent and temperature-independent, respectively, while fi(k̂) is the anisotropic func-
tion in which the subscripts i (i = 1, 2) represent the variables in the first and second band,
the coefficients for the inter-band mixing of the two order parameters and their gradient
are ε and ε1, respectively. The complex conjugate of the previous term appears as c.c. in

Equation (3),
⇀
A is the vector potential; the series γ0 + γ1B + γ2

B2

2µ0
represents the magnetic

field for a slight change in the B-field, where B describes the magnetic field and γ0, γ1 and
γ2 are coefficient parameters [33,34].
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γ0 + γ1B + γ2
B2

2µ0
=
∫

(B− µ0Mions)
dB
µ0
−(B− µ0M)Msc − (B− µ0M)Mions (4)

where B = µ0H + µ0Msc + µ0Mions and Mions = χHc2(T) + χ′(H −Msc − Hc2), obtaining
the magnetic field B = µ0(χ− χ′)Hc2 + µ0(1 + χ′)(H + Msc), in which µ0H, µ0Msc and
µ0Mions represent the applied field, the field generated by carriers, and the field generated
by ions, respectively, while χ is the susceptibility and χ′ is the differential susceptibility.

When we applied a variation of Equation (1) (concerning ψ∗1 and ψ∗2 ), the 1st Ginzburg–
Landau equation was found:

〈 f 2
1 (k̂)〉
2m1

(
−i}

⇀
∇− 2e

⇀
A
)2

ψ1 + α1

〈
f 2
1 (k̂)

〉
ψ1 + ε

〈
f1(k̂) f2(k̂)

〉
ψ2

+ε1

〈
f1(k̂) f2(k̂)

〉(
−i}

⇀
∇− 2e

⇀
A
)2

ψ2 = 0

(5)

〈 f 2
2 (k̂)〉
2m2

(
−i}

⇀
∇− 2e

⇀
A
)2

ψ2 + α2

〈
f 2
1 (k̂)

〉
ψ2 + ε

〈
f1(k̂) f2(k̂)

〉
ψ1

+ε1

〈
f1(k̂) f2(k̂)

〉(
−i}

⇀
∇− 2e

⇀
A
)2

ψ1 = 0

(6)

After substitution of C = ψ1
ψ2

, ψ1(x) = e
−δx2

2 and m1 = m2 = m, the simplified equation
was obtained as follows:

− }2

2m

[
C2
〈

f 2
1 (k̂)

〉
−
〈

f 2
2 (k̂)

〉]
d2ψ1
dx2 + 4e2 A2

2m

[
C2
〈

f 2
1 (k̂)

〉
−
〈

f 2
2 (k̂)

〉]
ψ1

+
[
α1C2

〈
f 2
1 (k̂)

〉
− α2

〈
f 2
2 (k̂)

〉]
ψ1 = 0

(7)

Using
⇀
A = (0, B0(x− x0), 0) as the one-dimensional vector potential, which takes the

magnetic field in the z-direction, and
⇀
B0 = B0

⇀
z , B0 = µ0(χ− χ′)Hc2 + µ0(1 + χ′)(H + Msc),

and identifying λ = 2e
} and α0 = − 2e2

m , the equation can be rewritten as

d2ψ1

dx2 − λ2B2
0(x− x0)

2ψ1 =
λ2

α0

[
α1C2〈 f 2

1 (k)
〉
− α2

〈
f 2
2 (k)

〉][
C2
〈

f 2
1 (k)

〉
−
〈

f 2
2 (k)

〉] ψ1 (8)

By setting ψ = exp(− 1
2 bξ2), ξ = (λB0)

1
2 x, ξ0 = (λB0)

1
2 x0 and

β = λ2

α0

[α1C2〈 f 2
1 (k)〉−α2〈 f 2

2 (k)〉]
[C2〈 f 2

1 (k)〉−〈 f 2
2 (k)〉]

, we can obtain the formula − d2ψ1
dξ2 + (ξ − ξ0)

2ψ1 = βψ1. The

variational problem of locating the minimum expression is equal to determining the min-

imum value of β [4,30] β =

∞∫
0

[(
dψ
dξ

)2
+(ξ−ξ0)ψ

2
]

dξ

∞∫
0

ψ2dξ
= b

2 + 1
2b −

2ξ0√
πb

+ ξ2
0. It was found that

βmin = b =
(
1− 2

π

) 1
2 . Thus, the result is B0 = λ

(1− 2
π )

1
2 α0

[
α1C2〈 f 2

1 (k̂)〉−α2〈 f 2
2 (k̂)〉

C2〈 f 2
1 (k̂)〉−〈 f 2

2 (k̂)〉

]
.

Because there is B0 = µ0(χ− χ′)Hc2 + µ0(1 + χ′)(H + Msc), the surface critical mag-
netic field depends on the anisotropic and temperature of the two-band magnetic super-
conductor as

Hc3 =

1.66
α0

[
α1(T)C2〈 f 2

1 (k̂)〉−α2(T)〈 f 2
2 (k̂)〉

C2〈 f 2
1 (k̂)〉−〈 f 2

2 (k̂)〉

]
Hc2 − (χ− χ′)Hc2

(1 + χ′)
(9)

where Hc3 is the surface critical magnetic field, Hc2 is the upper critical magnetic field, α1
and α2 are temperature-dependent functions in the first and second bands, respectively.
α0 is a constant with the value

(
α0 = − 2e2

m

)
, χ is the susceptibility, χ′ is the differential
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susceptibility, C corresponds to the quantity of energy band multiples, and
〈

f 2
1 (k̂)

〉
and〈

f 2
2 (k̂)

〉
are anisotropic functions in the first and second bands, respectively.

To learn more about the temperature dependency of the surface critical magnetic
field, there are four types of temperature-dependent functions [31], as follows: αCh =(

1− T
Tc

)
[35], αZh =

(
1−

(
T
Tc

)2
/1 +

(
T
Tc

)2
)

[20], αSh =
(

1− T
Tc

)
+ 1

2

(
1− T

Tc

)2
[36] and

αUd = p
(

1− T
Tc

)
+ q

2

(
1− T

Tc

)2
[37]. It was found that the temperature parameters are in

the polynomial of second order, so the second-order quadratic form is set up as

αi = pi

(
1− T

Tc

)
+

qi
2

(
1− T

Tc

)2
, i = 1, 2 (10)

The anisotropy is included in the consideration, and the anisotropic functions of ellipse
and pancake forms [38,39] were used for

〈
f 2(k̂)

〉
. The wave vector was changed into an

azimuthal angle then
〈

f 2(k̂)
〉
≡
〈

f 2(θ)
〉
. The anisotropic function consisting of an ellipse

shape from the model by Hass and Maki was f (θ) = 1+a cos2 θ
1+a , where a is the constant

that affects anisotropy and θ is the azimuthal angle. The experimentally determined gap
ratio results in a ≈ 1 for the calculations provided in [38]. In momentum space, the
anisotropic s-wave order parameter ∆(k) = ∆(1 + z2)/2 is displayed. This function is an
ellipsoid with a minor axis ∆/2 in the a-b plane and a major axis ∆ in the c direction. The
smaller value of the a-b plane gap function is consistent with the larger in-plane Coulomb
repulsion proposed in [40]. Likewise, the pancake shape of the model by Posazhennikova
was f (θ) = 1√

1+b cos2 θ
, b is the constant that affects anisotropy and θ is the azimuthal

angle concerning the c-axis. For b = 10 [39], the anisotropic s-wave order parameter in
momentum space has a pancake shape. Its maximum value ∆min = ∆ is in the ab-plane,
while its minimum value ∆min = ∆/

√
1 + b lies along the c-axis when ∆(k, T) ∼ f (k)∆(T),

demonstrating the link between the Ginzburg–Landau and the BCS theories ψ ∼ ∆ [41].
When setting

〈
f 2
1 (k̂)

〉
= 1 and

〈
f 2
2 (k̂)

〉
= 1, the surface critical magnetic field in

Equation (9) can be reduced to an isotropic two-band magnetic superconductor, and it can
be reduced to an isotropic one-band magnetic superconductor when setting α1 = α0 and
α2 = 0 [30]. Likewise, for non-magnetic superconductors, χ = χ′ = 1, it can be reduced to
a well-known single-band superconductor formula [2].

After using Equation (10), Equation (9) can be simplified as

Hc3

Hc2
= 1.66

[
k1 + k2

T
Tc

+ k3

(
T
Tc

)2
]

(11)

In which

k1 =
p1C2 − p2

〈 f 2
2 (k̂)〉
〈 f 2

1 (k̂)〉
+ q1

2 C2 − q2
2
〈 f 2

2 (k̂)〉
〈 f 2

1 (k̂)〉

α0(1 + χ′)

(
C2 − 〈 f 2

2 (k̂)〉
〈 f 2

1 (k̂)〉

) − (χ− χ′)

1 + χ′
,

k2 =
−p1C2 + p2

〈 f 2
2 (k̂)〉
〈 f 2

1 (k̂)〉
− q1C2 + q2

〈 f 2
2 (k̂)〉
〈 f 2

1 (k̂)〉

α0(1 + χ′)

(
C2 − 〈 f 2

2 (k̂)〉
〈 f 2

1 (k̂)〉

) ,

k3 =

 q1

2
C2 − q2

2

〈
f 2
2 (k̂)

〉
〈

f 2
1 (k̂)

〉
 1

α0(1 + χ′)

(
C2 − 〈 f 2

2 (k̂)〉
〈 f 2

1 (k̂)〉

) . (12)
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There is a singularity point at C2 =
〈 f 2

2 (k̂)〉
〈 f 2

1 (k̂)〉
or C = ±

√
〈 f 2

2 (k̂)〉
〈 f 2

1 (k̂)〉
where the wave function

and the average of the anisotropic function are coincidental. The crucial parameters are
k1, k2 and k3, while pi and qi are subparameters that denote arbitrary constant of the
temperature-dependent function of αUd, and the subscripts i = 1, 2 specify the variables
in the first and second energy bands. Because there is the upper critical magnetic field
in Equation (11), the same process was applied to find the temperature dependence of
Hc2(T) [37].

To calculate the upper critical magnetic field, one can substitute the vector potential
⇀
A = [µ0(χ− χ′)Hc2x + µ0(1 + χ′)(H + Msc)x] ĵ into the 1st Ginzburg–Landau equation in
Equations (5) and (6), set the magnetic parameter l2

s = }2

4e2(µ0(χ−χ′)Hc2x+µ0(1+χ′)(H+Msc)x)
(where µ0 represents the magnetic permeability), and assign the constant values λ1, λ1, a

and b to the wave function ψ1 = λ1e
−ax2

2 and ψ2 = λ2e
−bx2

2 [32,42,43], to obtain

− }2

2m1

〈
f 2
1 (k̂)

〉[
−a
(
1− ax2)− x2

l2
s

]
ψ1 + α1

〈
f 2
1 (k̂)

〉
ψ1 + ε

〈
f1(k̂) f2(k̂)

〉
ψ2

+}2ε1

〈
f1(k̂) f2(k̂)

〉[
−b
(
1− bx2)− x2

l2
s

]
ψ2 = 0

(13)

− }2

2m2

〈
f 2
2 (k̂)

〉[
−b
(
1− bx2)− x2

l2
s

]
ψ2 + α2

〈
f 2
2 (k̂)

〉
ψ2 + ε

〈
f1(k̂) f2(k̂)

〉
ψ1

+}2ε1

〈
f1(k̂) f2(k̂)

〉[
−a
(
1− ax2)− x2

l2
s

]
ψ1 = 0

(14)

When Equations (13) and (14) are written in matrix form, the result is a2 = 1
l2
s

and

b2 = 1
l2
s

when }2

2m1l2
s

〈
f 2
1 (k̂)

〉
− }2a2

2m1

〈
f 2
1 (k̂)

〉
= 0 and }2

2m2l2
s

〈
f 2
2 (k̂)

〉
− }2b2

2m2

〈
f 2
2 (k̂)

〉
= 0,

respectively, and set m1 = m2 = m, causing a temperature-dependent upper critical
magnetic field Hc2(T), as shown in the equation below:

Hc2 =
−m(α1 + α2 + 4εε1Ωm)

}e(1 + χ)(1− 4ε2
1Ωm2)

+
m(α1α2 + Ωε2)

}e(1 + χ)(α1 + α2 + 4εε1Ωm)
(15)

Using the temperature dependence as αi(T) = pi(1− T
Tc
) + qi

2 (1−
T
Tc
)

2
and αi0(T) =

pi0 +
qi0
2 , i = 1, 2, the result is

Hc2 ≈ H0
c2 + R1

T
Tc

+ R2

(
T
Tc

)2
(16)

In which

H0
c2 =

−m(α10 + α20 + 4εε1Ωm)

}e(1 + χ)(1− 4ε2
1Ωm2)

+
m(α10α20 −Ωε2)

}e(1 + χ)(α10 + α20 + 4εε1Ωm)
,

R1 =
m(p1 + p2 + q1 + q2)

}e(1 + χ)(1− 4ε2
1Ωm2)

−
m(2p1 p2 +

3p1q2
2 + 3p2q1

2 + q1q2)

}e(1 + χ)(α10 + α20 + 4εε1Ωm)
,

R2 =
−m( q1

2 + q2
2 )

}e(1 + χ)(1− 4ε2
1Ωm2)

+
m(p1 p2 +

3p1q2
2 + 3p2q1

2 + q1q2
2 )

}e(1 + χ)(α10 + α20 + 4εε1Ωm)
. (17)

where H0
c2 is the zero-temperature upper critical magnetic field and Ω =

〈 f1(k̂) f2(k̂)〉2
〈 f 2

1 (k̂)〉〈 f 2
2 (k̂)〉

,

<.....> is the average over Fermi surface. H0
c2, R1, and R2 are the crucial variables, whereas e

is electron charge, m is electron mass and ε and ε1 are inter-band mixing of the two order
parameters and their gradient.
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3. Results and Discussion

The simplified equation for the temperature-dependent surface and upper critical
magnetic field of anisotropic two-band superconductors is in the second-order quadratic
form as

Hc3(T)
Hc2(T)

= 1.66

[
k1 + k2

T
Tc

+ k3

(
T
Tc

)2
]

Hc2(T) ≈ H0
c2 + R1

T
Tc

+ R2

(
T
Tc

)2

Here, the constants k1, k2, k3, R1, R2 and H0
c2 can be fit by using the experimental data

that can give information on the temperature-dependent behavior and anisotropic type
of superconductor.

FeSe refers to a distinct class of binary iron–chalcogenide materials (FeCh; Ch = chalco-
gens) characterized as “without charge reservoir layers” [28,44]. In general, structural
parameters change for AFe2Se2 phases that can be accomplished through cation substitu-
tions (in A- or (and) iron sites) or anion substitutions in Se sites. Data show that changes in
A sites have the greatest influence on parameter c during the series [45]; the c parameters
rise while parameter a fluctuates very little. For example, replace A with K as KFe2Se2,
RbFe2Se2, and CsFe2Se2. Changes in the anion sites could cause significant changes in the
electronic properties of ternary iron-chalcogenide superconductors, and the structure of
these substances matches their bandgap and Fermi surface topology. The fundamental
properties of electronic bands and the Fermi surface topology result in near-fermi bands
having a complex “mixed” nature that is strongly anisotropic. The Fermi level is crossed
by quasiflat and high-dispersive bands; the Fermi surface is completely electronic-like,
and the bandwidth narrows as the particle densities of states increase. However, there
is little experimental data on the surface and upper critical magnetic fields of the super-
conductors that only have for K0.73Fe1.68Se2 and La1.85Sr0.15CuO4 superconductors. The
K0.73Fe1.68Se2 superconductor is one of the superconductors in the MFe2Se2 type (M = K,
Rb, Cs, Tl/K and Tl/Rb), which exhibit long-range three-dimensional antiferromagnetism
at TN ≈ 140–150 K and 520–550 K [22]. The Fe2+ moments are along the c-axis [46]. The
structure and magnetism transition are tetragonal to orthorhombic for the preceding pnic-
tides, but there is a tetragonal (I4/mmm) structure to another tetragonal (I4/m) structure
for Fe-Se based. The nonstoichiometric KxFe2−xSe2 materials become superconductors at
about 30–33 K, during which the antiferromagnetic state persists even at a low temperature.
Thus, the superconducting state and antiferromagnetic state are coexistent in this material.
Both states are in the same Fe-Se crystallographic layer [47]. The study of this material has
discovered a new interplay between magnetism and superconductivity, which should usher
in a new era of superconducting and magnetism coexistence. The study on K0.73Fe1.68Se2
superconductor [22] discovered that there was no symmetry hysteresis, that AFM and Fm
particles coexisted, and that the diamagnetic signal from the Fe effect was found.

To apply the formula in this study to the K0.73Fe1.68Se2 superconductor, the experimen-
tal data Hc2 and Hc3 were fitted with a second-order polynomial, and the coefficients were
read out and solved. Using the constants in Equations (18) and (19) and their substitution
into Equations (12) and (17) and solving for the internal parameters of superconductors,
the equation yield C = 2, α0 = 0.001, χ = 1, χ′ = −0.72, m

}e = 300, ε1m = 0.1, ε = 1,
p1 = −0.888285, p2 = −3.89599, q1 = 1 and q2 = 7.79991.

The constants were found to be

Hc3(T)
Hc2(T)

= 1.66

[
−1092.95 + 2285.32

T
Tc 2
− 1188.66

(
T
Tc

)2
]

(18)

Hc2(T) ≈ 416.37− 618.59
T
Tc

+ 202.35
(

T
Tc

)2
(19)
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Equations (18) and (19) were used to calculate the curve with Tc = 30.8 K, and the
behavior of Hc3(T)

Hc2(T)
and Hc2(T) versus temperature is shown in Figure 1. Here, the upper

critical magnetic field decreases as the temperature increases and reaches zero at a critical
temperature. The zero-temperature upper critical of 416.37 kOe was found to be in the
range from 193 kOe to 60 T of the rough estimation for Ref. [22] and well extrapolated in a
wide range of temperatures for Ref. [48].
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Figure 1. The Hc3(T)
Hc2(T)

and Hc2(T) versus temperature (T) of K0.73Fe1.68Se2 superconductor.

The calculation in this study found that Hc3(Tc)
Hc2(Tc)

≈ 6.2 was higher than that reported

by Hc3(Tc)
Hc2(Tc)

≈ 4.4 [22]. However, the result showed the temperature dependence on Hc3(T)
Hc2(T)

value was higher than 1.66 for a well-known formula. As the temperature increases, Hc3(T)
Hc2(T)

is decreased to the lowest value of 6.2. It was found that the magnetic parameters such
as χ and χ′ showed a higher effect on Hc3(Tc)

Hc2(Tc)
than the other parameters at the critical

temperature.

The anisotropic behavior is appropriate for a pancake shape:
(

f (θ) = 1√
1+ai cos2 θ

, i = 1, 2
)

where 〈 f 2
2 (k̂)〉
〈 f 2

1 (k̂)〉
= 0.94555 and Ω =

〈 f1(k̂) f2(k̂)〉2
〈 f 2

1 (k̂)〉〈 f 2
2 (k̂)〉

= 0.5, with a1 = 2.49785 and a2 = 3.39198.

The Fermi surfaces of each band were plotted so that they were nearly identical in shape, as
shown in Figure 2.

This study demonstrated the temperature and anisotropy dependence of the pancake-
pancake shape in the band structure of the K0.73Fe1.68Se2 superconductor. The anisotropic
characteristics of the K0.73Fe1.68Se2 superconductor have been studied and shown to be
anisotropic in the upper and surface critical magnetic fields [22,48]. Here, the two-band
model was utilized for the computation. However, the findings were nearly the same for
both bands. Our findings are consistent with the experimental data, which reveal that the
geometry of the upper critical magnetic field has a high value in the same range [22,46–48].
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Superconducting cuprate: LaSrCuO (LSCO) changes into a normal conductor in the
presence of a strong magnetic field and a low temperature [49]. In the crystal lattice, ions
of the rear earth elements divide layers of copper oxide planes [50]; the spacing between
these ions is approximately 3.78 Angstrom. There are two layers of La (Sr)-O planes
between neighboring Cu-O planes in LSCO. Doping alters the charge carrier concentration
in LSCO superconductors. The valance is La3+ and O2+. Therefore, all the Cu ions in
the parent molecule (x = 0) are in the Cu2+ state, i.e., they contain one unpaired electron
in a d shell. As x goes up, the number of carriers on the Cu-O planes is controlled by
“charge reservoirs” placed between the planes. Because the valence of Sr is only 2+,
increasing its Sr concentration to x pulls the electrons from the copper planes and causes
holes in the copper sites. The concentration of holes in LSCO is related to the Sr of the
unit cell. As doping fluctuates, the physical characteristics of cuprates alter dramatically.
As the doping x and temperature T are varied, several phases with unusual physical
features have been identified [51]. On the Cu-O planes of the undoped parent material,
the electron spins are organized in an antiferromagnetic (AF) configuration. Once holes
are added to a system, the antiferromagnetic order across long distances is destroyed. At
x = 0, the TN of this phase is close to room temperature, and it drops quickly with small
changes in x until it is gone at x = 0.02. In contrast, high Tc superconductivity ranges from
x = 0.05 to x = 0.26, with the greatest transition temperature Tc of about 38 K occurring at
x = 0.15. Numerous tests indicate that the order parameter of cuprates possesses d-wave
symmetry, i.e., ∆(k) = ∆0(cos(kx)− cos(ky)). In the area between AF and SC, x = 0.02
and x = 0.05, a spin glass phase (SG) containing short-range magnetic order coexists with
superconductivity up to x = 0.08 [52]. Above x = 0.27, superconductivity disappears and
LSCO acts like a normal metal. Research was carried out on La1.85Sr0.15CuO4 single crystals
using tiny magnetic fields. This enabled the measurement of the AB-plane and C-axis
diamagnetic responses. The primary findings of this study were anisotropic between the
two directions of the superconducting transition temperature. All samples positioned
perpendicular to the planes demonstrated consistently greater Tc than those oriented
parallel to the planes.

La1.85Sr0.15CuO4 is another superconductor that has sufficient data for consideration.
La1.85Sr0.15CuO4 single crystals [9] have been measured for the temperature dependence of
the upper and surface critical fields. The paramagnetic properties were found and shown
to exhibit the paramagnetic Meissner effect under critical temperatures. The Hc2(0) was
estimated with Ha

c2(0) = 11.6 T and Hc
c2(0) = 4.1 T for a- and c-crystals, respectively. The

surface critical field was estimated linearly near Tc, resulting in an anisotropy effect with
Hc3
Hc2

= 1.80 and 4.0 in c- and a-crystals near the critical temperature (35 K).
The experimental data for the La1.85Sr0.15CuO4 superconductor in the a-direction,

LaSrCuO-a, were fitted using a second-order polynomial, and the coefficients were read
out and solved using Equations (12) and (17). The parameters include C = 2, α0 = 0.1,
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χ = −0.2, χ′ = 0.1, m
}e = 10, ε1m = 0.1, ε = 1, p1 = −1.0951, p2 = 1.0583, q1 = −10 and

q2 = −0.980902, with Tc = 34.8 K.
Giving

Hc3(T)
Hc2(T)

= 1.66

[
3.69− 1.12

T
Tc 2
− 2.41

(
T
Tc

)2
]

(20)

Hc2(T) ≈ 84.728− 156.42
T
Tc

+ 71.694
(

T
Tc

)2
(21)

The anisotropic behavior is suitable for a pancake shape
(

f (θ) = 1√
1+ai cos2 θ

, i = 1, 2
)

in which 〈 f 2
2 (k̂)〉
〈 f 2

1 (k̂)〉
= 357.941 and Ω =

〈 f1(k̂) f2(k̂)〉2
〈 f 2

1 (k̂)〉〈 f 2
2 (k̂)〉

= 0.5 with a1 = 919525 and a2 = 3.33332.

Figure 3 shows the Ha
c3(T)

Ha
c2(T)

and Ha
c2(T) versus the temperature of the LaSrCuO-a supercon-

ductor calculated using Equations (20) and (21); the Ha
c3(Tc)

Ha
c2(Tc)

≈ 0.3 and Ha
c2(T = 0) = 84.728 T

Tc = 34.8 K were found. Figure 4 shows the anisotropic shape of the first and second bands,
with flat band behavior in the first band.
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The experimental data for the La1.85Sr0.15CuO4 superconductor in the c-direction,
LaSrCuO-c, were fitted using a second-order polynomial, and the coefficients were read
out and solved using Equations (12) and (17). The parameters included C = 2, α0 = 0.1,
χ = 1, χ′ = −4.2, m

}e = 10, ε1m = 0.1, ε = 1, p1 = 2.38547, p2 = −1.827, q1 = −10 and
q2 = 1.48924, with Tc = 34.8 K.

Thus,
Hc3(T)
Hc2(T)

= 1.66

[
2.598 + 1.352

T
Tc 2
− 2.991

(
T
Tc

)2
]

(22)

Hc2(T) ≈ 14.446− 27.526
T
Tc

+ 13.079
(

T
Tc

)2
(23)

The anisotropic behavior is suitable for a pancake shape
(

f (θ) = 1√
1+ai cos2 θ

, i = 1, 2
)

in which 〈 f 2
2 (k̂)〉
〈 f 2

1 (k̂)〉
= 31.5626 and Ω =

〈 f1(k̂) f2(k̂)〉2
〈 f 2

1 (k̂)〉〈 f 2
2 (k̂)〉

= 0.5 with a1 = 7050.9 and a2 = 3.33228.

Figure 5 shows the Hc
c3(T)

Hc
c2(T)

and Hc
c3(T) versus temperature of the LaSrCuO-c supercon-

ductor calculated using Equations (22) and (23); the Hc
c3(Tc)

Hc
c2(Tc)

≈ 1.6 and Hc
c2(T = 0) = 14.446 T

Tc = 34.8 K were found. Figure 6 shows an anisotropic shape with one flat band in the
c-direction.
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It was found that Ha
c2(0) = 84.728 T and Hc

c2(0) = 14.446 T were in the range of
Ha

c2(0) = 75 T [53]. The highly anisotropic properties of the La1.85Sr0.15CuO4 superconduc-
tor were discovered. The findings are consistent with a large magnitude difference in the

c- and a- directions [9]. In both directions, the Hc3(T)
Hc2(T)

ratio decreases as the temperature

increases. The magnetic parameters χ and χ′ have a greater impact on the Hc3(T)
Hc2(T)

ratio at

critical temperatures than the other. According to the report in Ref. [9], Ha
c3(Tc)

Ha
c2(Tc)

≈ 4.2 and
Hc

c3(Tc)
Hc

c2(Tc)
≈ 1.8 with Tc ≈ 35 K in an experiment that was conducted using linear extrapola-

tion to estimate the value at critical temperatures. By using the two-band model, it could

be found that Ha
c3(Tc)

Ha
c2(Tc)

≈ 0.3 and Hc
c3(Tc)

Hc
c2(Tc)

≈ 1.6 were in the same range of convention value at

1.66. The influence of magnetic parameters on the Hc3(Tc)
Hc2(Tc)

ratio that was incorporated in the
computation is significant.

The upper critical magnetic field of LaSrCuO was determined using the London
penetration depth and coherence length methods in order to predict the upper critical field
Hc2 (T) for zero-temperature in superconductors with weak electron–phonon coupling
limit, as described in Ref. [53]. Additionally, the Werthamar–Helfand–Honenberg method
was employed as outlined in Ref. [9]. Both of these models utilize experimental data
in order to describe the upper critical magnetic field of cuprate superconductors. The
temperature-dependent upper critical magnetic field was analyzed by Talantsev et al. [54]
and the modified Gorter–Casimir model [55–58] and modified WHH [59–64] were used to
fit the experimental data with the degree 4th polynomial [54]. The parameters used are zero-
temperature coherence length, zero-temperature energy gap, zero-temperature penetration
depth, specific heat jump and critical temperature under the BCS approximation. Our
model attempts to describe both the upper and surface critical magnetic fields. Specifically,
we assume temperature-dependent parameters for a second-order polynomial, with free
energy calculated within the region of the GL theory, to estimate the upper critical fields
Hc2 (T) and Hc3 (T) near zero temperature. After fitting experimental data, the temperature
relation of our model can be used to represent the zero temperature of the upper and
surface critical magnetic fields. It should be interesting to analyze the experimental data of
upper and surface critical magnetic fields using the various model; this requires raw data,
which cover the reduced temperature, to estimate the zero-temperature critical magnetic
field that is not available. We found that the zero-temperature upper critical magnetic fields
for KFeSe, LaSrCuO-a, and LaSrCuO-c are 416.37 kOe, 84.728 T, and 14.446 T, respectively.
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4. Conclusions

To sum up, this work investigated the surface critical magnetic field (Hc3) and the
second critical magnetic field (Hc2) by taking into account the temperature-dependent
function and the energy gap anisotropic function. Beginning with the Ginzburg–Landau
equation for free energy, two bands of magnetic superconductors were identified. By
minimizing the free energy of two bands

(
∂Fsc
∂ψ∗1

, ∂Fsc
∂ψ∗2

)
, two equations were obtained for

the first Ginzburg–Landau equation. The first Ginzburg-Landau equation was simplified
using the variation method to acquire the critical magnetic field at the surface. Then, the
temperature-dependent functions were implemented. After that, the Hc3 was expressed in
second-order polynomial form. The Hc2 was also reduced to its second-order polynomial
by applying the temperature-dependent expressions, and the ratio for Hc3/Hc2 in terms
of T/Tc was determined. To assess the outcomes, the values of six crucial parameters
were analyzed using the iteration method: k1, k2, k3, H0

c2, R1 and R2. The energy gap
anisotropy function was shaped like a pancake–pancake by these important parameters;
both the first and second bands had the shape of a pancake. The results were fitted to
the experiments with iron-based superconductors (KFeSe) and cuprate superconductors
(LaSrCuO). The Tc of K0.73Fe1.68Se2 was 30.8 K. As the temperature increased, both Hc2 and
Hc3/Hc2 decreased, with Hc2 reaching zero at Tc and Hc3/Hc2 achieving roughly 6.2 at Tc.
This is consistent with the experimental results [22,48], where Hc3/Hc2 is greater than the
experimental result [22] and Hc2 at 0 K is within the experimental range [48]. Moreover, the
shapes of the Fermi surfaces in the pancake shapes of the two bands were essentially similar.
La1.85Sr0.15CuO4 had Tc of 34.8 K. Hc2 and Hc3/Hc2 fell as temperature increased along
the a- and c-directions, with Ha

c2 and Hc
c2 reaching zero at Tc and Ha

c3/Ha
c2 and Hc

c3/Hc
c2

approaching around 0.3 and 1.6, respectively. This fits with the experimental results [9,53],
where Hc3/Hc2 are lower than the experimental results [9], but within the range of the
conventional value [2], and Hc2 at 0 K is within the experimental range [53]. In addition,
the pancake shapes of the Fermi surface in the first band exhibited flat band behavior.
Thus, La1.85Sr0.15CuO4 is a superconductor with a single band. The temperature-dependent
Hc3/Hc2 ratios of K0.73Fe1.68Se2 and La1.85Sr0.15CuO4 were higher than and within the same
range as the well-known formula [2], respectively, which, in the calculation for this study,
shows that the influence of magnetic parameters (χ and χ′) has an effect on the Hc3/Hc2
ratio. The discovery of the shape of the Fermi surface reveals the microscopic structure of
Fermi energy, which is significantly beneficial to researchers.
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