Effect of Laser Conditioning on Surface Modification and Laser Damage Resistance of SiO2 Antireflection Film
(This article belongs to the Section Inorganic Crystalline Materials)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Laser Induced Damage Threshold Measurement System and Laser Conditioning Scheme
2.3. Structural Characterization
3. Results and Discussion
3.1. Single-Step Laser Conditioning Process
3.2. Multi-Step Laser Conditioning Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moore, L.A.; Smith, C.M. Fused silica as an optical material [Invited]. Opt. Mater. Express 2022, 12, 3043. [Google Scholar] [CrossRef]
- Criddle, J.; Nürnberg, F.; Sawyer, R.; Bauer, P.; Langner, A.; Schötz, G. Fused silica challenges in sensitive space applications. Proc. SPIE 2016, 9912, 99120K. [Google Scholar]
- Campbell, J.H.; Hawley-Fedde, R.; Stolz, C.J.; Menapace, J.A.; Borden, M.R.; Whitman, P.K.; Yu, J.; Runkel, M.; Riley, M.O.; Feit, M.D.; et al. NIF optical materials and fabrication technologies: An overview. Proc. SPIE 2004, 5341, 84. [Google Scholar]
- Han, W.; Feng, B.; Zheng, K.X.; Zhu, Q.H.; Zheng, W.G.; Gong, M.L. Laser-induced damage growth of fused silica at 351 nm on a large-aperture high-power laser facility. Acta Phys. Sin. 2016, 65, 246102. (In Chinese) [Google Scholar] [CrossRef]
- Bude, J.; Miller, P.; Baxamusa, S.; Shen, N.; Laurence, T.; Steele, W.; Suratwala, T.; Wong, L.; Carr, W.; Cross, D.; et al. High fluence laser damage precursors and their mitigation in fused silica. Opt. Express 2014, 22, 5839. [Google Scholar] [CrossRef]
- Ly, S.; Laurence, T.A.; Shen, N.; Hollingsworth, B.; Norton, M.; Bude, J.D. Gigashot optical degradation in silica optics at 351 nm. Opt. Express 2015, 23, 4074. [Google Scholar] [CrossRef]
- Chai, X.X.; Li, P.; Zhao, J.P.; Wang, G.Z.; Zhu, D.Y.; Jiang, Y.L.; Chen, B.; Zhu, Q.H.; Feng, B.; Wang, L.Q.; et al. Laser-induced damage growth of large-aperture fused silica optics under high-fluence 351 nm laser irradiation. Optik 2021, 226, 165549. [Google Scholar] [CrossRef]
- Cao, Z.; He, H.B.; Hu, G.H.; Zhao, Y.A.; Yang, L.J.; Shao, J.D. Transient optical properties in fused silica measured by time-resolved high-power laser photometer. Chin. Opt. Lett. 2019, 17, 051601. [Google Scholar] [CrossRef]
- Zhao, Q.; Fan, Z.X.; Wang, Z.J. Study on laser conditioning of optical coatings. Chin. J. Lasers 1996, B5, 371. [Google Scholar]
- Sahraee, M.; Fallah, H.R.; Zabolian, H.; Moradi, B.; Mahmoodzade, M.H. Influence of laser conditioning on laser induced damage threshold of single layers of ZrO2 with various deposition conditions. Opt. Spectrosc. 2015, 118, 627. [Google Scholar] [CrossRef]
- Ling, X.L.; Liu, S.H.; Liu, X.F. Different material modifications in laser-induced damage of optical films in air and vacuum environments. Thin Solid Films 2020, 703, 137974. [Google Scholar] [CrossRef]
- Bercegol, H. What is laser conditioning? A review focused on dielectric multilayers. SPIE 1998, 3578, 421. [Google Scholar]
- Papandrew, A.B.; Stolz, C.J.; Wu, Z.L.; Loomis, G.E.; Falabella, S. Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy. SPIE 2001, 4347, 53. [Google Scholar]
- Zhao, Y.A.; Shao, J.D.; He, H.B.; Fan, Z.X. Laser conditioning of high-reflective and anti-reflective coatings at 1064nm. Proc. SPIE 2005, 5991, 599117. [Google Scholar]
- Zhang, D.P.; Fan, P.; Cai, X.M.; Shao, J.D.; Fan, Z.X. Comparison of ion posttreatment and laser conditioning of thin films. Proc. SPIE 2007, 6722, 67221Q. [Google Scholar]
- Kozlowski, M.R.; Staggs, M.; Rainer, F. Laser condition and electronic defects of HfO2 and SiO2 thin films. SPIE 1990, 1441, 269. [Google Scholar]
- Zhou, Y.W.; Xie, J.; Li, Y.D. Investigation of laser conditioning of optical coatings and the mechanisms. Laser J. 1998, 19, 5. (In Chinese) [Google Scholar]
- Ling, X.L.; Zhao, Y.A.; Li, D.W.; Shao, J.D.; Fan, Z.X. Laser conditioning of high-reflective and anti-reflective coatings in vacuum environments. Opt. Commun. 2010, 283, 2728. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.F.; Zhao, Y.A.; Shao, J.D. Influence of laser-conditioning on defects of SiO2 mono-layer films. Chin. J. Lasers 2010, 37, 1626. (In Chinese) [Google Scholar]
- Li, Z.H.; Du, J.; Zhao, Y.A.; Wang, Y.L.; Leng, Y.X.; Shao, J.D. Modeling the effect of nanosecond laser conditioning on the femtosecond laser-induced damage of optical films. Opt. Express 2015, 23, 14774. [Google Scholar] [CrossRef]
- Yang, L.H.; Xue, P.C.; Wang, T.; Su, J.H. Influence of Laser Conditioning on the Damage Properties of HfO2 Thin Films. J. Optoelectron. Laser 2018, 29, 187. (In Chinese) [Google Scholar]
- Zhang, J.; Geng, F.; Liu, Z.C.; Xu, T.; Zhang, Q.H.; Xu, Q.; Li, Y.G. Elimination of X-rays irradiated defects in fused silica by laser conditioning. Opt. Commun. 2021, 483, 126639. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Chen, J.; Yang, K.; Jiang, Y.; Liao, W.; Zhang, C.C.; Ye, Y.Y.; Luan, X.Y.; Wang, H.J.; Jiang, X.L.; et al. UV laser conditioning of the sol-gel SiO2 film coated fused silica optics. Optik 2017, 139, 178. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, X.; Pan, F.; Xu, Q. Effect of laser conditioning on nanoprecursor for improving laser damage resistance of HfO2 coatings. Laser Phys. 2018, 28, 036003. [Google Scholar] [CrossRef]
- Guo, D.; Jiang, X.; Huang, J.; Wang, F.; Liu, H.; Zu, X. Effect of UV Laser Conditioning on the Structure of KDP Crystal. Adv. Condens. Matter Phys. 2014, 2014, 451048. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ling, X.; Chen, X.; Liu, X. Monitoring laser conditioning effect by real-time thermo-reflectance measurement. Phys. Scr. 2021, 96, 125521. [Google Scholar] [CrossRef]
- Kafka, K.R.P.; Papernov, S.; Demos, S.G. Enhanced laser conditioning using temporally shaped pulses. Opt. Lett. 2018, 43, 1239. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, F.; Lei, X.; Li, Y.; Cheng, J.; Zheng, Y.; Wang, J.; Xu, Q. Effect of laser pulse duration and fluence on DKDP crystal laser conditioning. Appl. Opt. 2020, 59, 5240. [Google Scholar] [CrossRef]
Sample Number | Laser Conditioning Scheme |
---|---|
0# | as-grown coating |
1# | (0.4–1.0) Fth0 |
2# | (0.2–0.6–1.0) Fth0 |
3# | (0.4–0.6–0.8) Fth0 |
4# | (0.2–0.4–0.6–0.8–1.0) Fth0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Jiang, X.; Chen, J.; Zhang, C.; Yan, L.; Wang, H.; Luan, X.; Liao, W.; Jiang, X.; Jiang, Y. Effect of Laser Conditioning on Surface Modification and Laser Damage Resistance of SiO2 Antireflection Film. Crystals 2023, 13, 477. https://doi.org/10.3390/cryst13030477
Zhang L, Jiang X, Chen J, Zhang C, Yan L, Wang H, Luan X, Liao W, Jiang X, Jiang Y. Effect of Laser Conditioning on Surface Modification and Laser Damage Resistance of SiO2 Antireflection Film. Crystals. 2023; 13(3):477. https://doi.org/10.3390/cryst13030477
Chicago/Turabian StyleZhang, Lijuan, Xiaolong Jiang, Jing Chen, Chuanchao Zhang, Lianghong Yan, Haijun Wang, Xiaoyu Luan, Wei Liao, Xiaodong Jiang, and Yong Jiang. 2023. "Effect of Laser Conditioning on Surface Modification and Laser Damage Resistance of SiO2 Antireflection Film" Crystals 13, no. 3: 477. https://doi.org/10.3390/cryst13030477