Influence of X Cation Covalence in the Formation of Ni-O-X Mixed Oxides by Reactive Ion Beam Mixing of Ni/X Interfaces
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Z.; Fang, D.; Liang, Y.; He, Y.; Einaga, H.; Shangguan, W. Catalytic degradation of benzene over non-thermal plasma coupled Co-Ni binary metal oxide nanosheet catalysts. J. Environ. Sci. 2023, 132, 1–11. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, M.; Ren, A.; Huang, Y.; Yan, X.; Feng, R.; Zhao, G. Mesoporous nickel-cobalt oxide for efficient liquid-phase benzyl alcohol oxidation by air. Catal. Today 2022, 405–406, 75–81. [Google Scholar] [CrossRef]
- Faid, A.Y.; Barnett, A.O.; Seland, F.; Sunde, S. NiCu mixed metal oxide catalyst for alkaline hydrogen evolution in anion exchange membrane water electrolysis. Electrochim. Acta 2021, 371, 137837. [Google Scholar] [CrossRef]
- Dhas, C.R.; Monica, S.E.S.; Jothivenkatachalam, K.; Nathanael, A.J.; Kavinkumar, V.; Venkatesh, R.; Arivukarasan, D. Direct-grown nebulizer-sprayed nickel-copper mixed metal oxide nanocomposite films as bifunctional electrocatalyst for water splitting. Ionics 2021, 28, 383–396. [Google Scholar] [CrossRef]
- Rastegarpanah, A.; Liu, Y.; Deng, J.; Jing, L.; Pei, W.; Zhang, X.; Hou, Z.; Rezaei, M.; Dai, H. Influence of preparation method on catalytic performance of three-dimensionally ordered macroporous NiO-CuO for CO oxidation. J. Solid State Chem. 2021, 297, 122091. [Google Scholar] [CrossRef]
- Awan, I.Z.; Beltrami, G.; Bonincontro, D.; Gimello, O.; Cacciaguerra, T.; Tanchoux, N.; Martucci, A.; Albonetti, S.; Cavani, F.; Di Renzo, F. Copper-nickel mixed oxide catalysts from layered double hydroxides for the hydrogen-transfer valorisation of lignin in organosolv pulping. Appl. Catal. A Gen. 2021, 609, 117929. [Google Scholar] [CrossRef]
- Kong, L.; Li, D.; Bi, J.; Fan, X.; Xie, Z.; Xiao, X.; Zhao, Z. Template-induced mesoporous Ni-Al oxide catalysts with tuned physico-chemical properties for the oxidative dehydrogenation of ethane. J. Chem. Eng. 2023, 452, 139247. [Google Scholar] [CrossRef]
- Nesterov, N.S.; Pakharukova, V.P.; Philippov, A.A.; Gerasimov, E.Y.; Tsybulya, S.V.; Martyanov, O.N. Synthesis of catalytic precursors based on mixed Ni-Al oxides by supercritical antisolvent co-precipitation. Catalysts 2022, 12, 1597. [Google Scholar] [CrossRef]
- Caravaggio, G.; Nossova, L.; Turnbull, M.J. Nickel-magnesium mixed oxide catalyst for low temperature methane oxidation. J. Chem. Eng. 2021, 405, 126862. [Google Scholar] [CrossRef]
- Summa, P.; Gajewska, M.; Li, L.; Hu, C.; Samojeden, B.; Motak, M.; Da Costa, P. Solution combustion synthesis as an alternative synthesis route for novel Ni-Mg-Al mixed-oxide catalyst for CO2 methanation. J. CO2 Util. 2022, 60, 101983. [Google Scholar] [CrossRef]
- Zahra, T.; Ahmad, K.S.; Zequine, C.; Gupta, R.; Malik, M.A.; Niazi, J.H.; Qureshi, A. Bio-inspired NiO/ZrO2 mixed oxides (NZMO) for oxygen evolution reactions: From facile synthesis to electrochemical analysis. J. Chem. Technol. Biotechnol. 2023, 98, 296–305. [Google Scholar] [CrossRef]
- Moschkowitsch, W.; Zion, N.; Honig, H.C.; Levy, N.; Cullen, D.A.; Elbaz, L. Mixed-Metal Nickel-Iron Oxide Aerogels for Oxygen Evolution Reaction. ACS Catal. 2022, 12, 12162–12169. [Google Scholar] [CrossRef]
- Nozari-Asbemarz, M.; Amiri, M.; Imanzadeh, H.; Bezaatpour, A.; Nouhi, S.; Hosseini, P.; Wark, M.; Seifzadeh, D. Mixed metal oxides as efficient electrocatalysts for water oxidation. Int. J. Hydrogen Energy 2022, 47, 5250–5259. [Google Scholar] [CrossRef]
- Devi, S.; Sunaina, R.; Wadhwa, R.; Yadav, K.K.; Jha, M. Understanding the origin of ethanol oxidation from ultrafine nickel manganese oxide nanosheets derived from spent alkaline batteries. J. Clean. Prod. 2022, 376, 134147. [Google Scholar] [CrossRef]
- Perez, L.C.P.; Chalkley, Z.; Wendt, R.; Ahmet, I.Y.; Wollgarten, M.; Mayer, M.T. CO2 electro reduction activity and dynamic structural evolution of in situ reduced nickel-indium mixed oxides. J. Mat. Chem. A 2022, 10, 20593–20605. [Google Scholar] [CrossRef]
- Aberkane, A.B.; Yeste, M.P.; Djazi, F.; Cauqui, M.A. CO methanation over NiO-CeO2 mixed-oxide catalysts prepared by a modified co-precipitation method: Effect of the preparation pH on the catalytic performance. Nanomaterials 2022, 12, 2627. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Surendran, S.; Lim, Y.; Choi, H.; Lim, J.; Kim, J.Y.; Han, M.; Sim, U. Spinel-type Ni2GeO4 electrocatalyst for electrochemical ammonia synthesis via nitrogen reduction reaction under ambient conditions. Int. J. Energy Res. 2021, 46, 4119–4129. [Google Scholar] [CrossRef]
- Kulal, N.; Vetrivel, R.; Gopinath, C.S.; Ravindran, R.K.; Rao, V.N.; Shetty, M.; Shrikanth, R.; Rangappa, D.; Shanbhag, G.V. Green route for carbonylation of amines by CO2 using Sn-Ni-O bifunctional catalyst and theoretical study for finding best suited active sites. J. Eng. Chem. 2021, 419, 129439. [Google Scholar] [CrossRef]
- Zhao, Z.; Lakshminarayanan, N.; Swartz, S.L.; Arkenberg, G.B.; Felix, L.G.; Slimane, R.B.; Choi, C.C.; Ozkan, U.S. Characterization of olivine-supported nickel silicate as potential catalysts for tar removal from biomass gasification. Appl. Cat. A Gen. 2015, 489, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Bilal, A.; Kasi, J.K.; Kasi, A.K.; Bokhari, M.; Ahmed, S.; Ali, S.W. Environment friendly synthesis of nickel ferrite nanoparticles using Brassica oleracea var. capitate (green cabbage) as a fuel and their structural and magnetic characterizations. Mat. Chem. Phys. 2022, 290, 126483. [Google Scholar] [CrossRef]
- Din, S.U.; Ul Haq, M.; Sajid, M.; Khatoon, R.; Chen, X.; Li, L.; Zhang, M.; Zhu, L. Development of high-performance sensor based on NiO/SnO(2)heterostructures to study sensing properties towards various reducing gases. Nanotechnology 2020, 31, 395502. [Google Scholar] [CrossRef] [PubMed]
- Arranz, A.; Palacio, C. Nanoscale modification of Ni/Al interfaces by low-energy O2+ reactive ion beam mixing. Appl. Phys. A 2011, 103, 309–316. [Google Scholar] [CrossRef]
- Proctor, A.; Sherwood, M.P.A. Data analysis techniques in x-ray photoelectron spectroscopy. Anal. Chem. 1982, 54, 13–19. [Google Scholar] [CrossRef]
- Bell, G.G.; Ley, L. Photoemission study of SiOx (0 ≤ x ≤ 2) alloys. Phys. Rev. B 1998, 37, 8383–8393. [Google Scholar] [CrossRef] [PubMed]
- Guittet, M.J.; Crocombette, J.P.; Gauttier-Soyer, M. Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects. Phys. Rev. B 2001, 63, 125117. [Google Scholar] [CrossRef]
- Ünveren, E.; Kemnitz, E.; Hutton, S.; Lippitz, A.; Unger, W.E.S. Analysis of highly resolved x-ray photoelectron Cr 2p spectra obtained with a Cr2O3 powder sample prepared with adhesive tape. Surf. Interface Anal. 2004, 36, 92–95. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Brown, C.; Mycroft, J.R.; Davidson, R.D.; McIntyre, N.S. X-ray photoelectron spectroscopy studies of chromium compounds. Surf. Interface Anal. 2004, 36, 1550–1563. [Google Scholar] [CrossRef]
- Barr, T.L. Recent advances in x-ray photoelectron spectroscopy studies of oxides. J. Vac. Sci. Technol. A 1991, 9, 1793–1805. [Google Scholar] [CrossRef]
- Maiti, K.; Mahadevan, P.; Sarma, D.D. Evolution of electronic structure with dimensionality in divalent nickelates. Phys. Rev. B 1999, 59, 12457–12469. [Google Scholar] [CrossRef]
- Altieri, S.; Tjeng, L.H.; Tanaka, A.; Sawatzky, G.A. Core-level x-ray photoemission on NiO in the impurity limit. Phys Rev. B 2000, 61, 13403–13409. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, E.R.; Howery, D.C. Factor Analysis in Chemistry; Krieger: Malabar, FL, USA, 1989. [Google Scholar]
- Palacio, C.; Mathieu, H.J. Application of factor analysis to the AES and XPS study of the oxidation of chromium. Surf. Interface Anal. 1990, 16, 178–182. [Google Scholar] [CrossRef]
- Fiedor, J.N.; Proctor, A.; Houalla, M.; Hercules, D.M. Determination of the distribution of molybdenum oxidation states in reduced Mo/TiO2 catalysts by factor analysis and curve fitting. Surf. Interface Anal. 1993, 20, 1–9. [Google Scholar] [CrossRef]
- Arranz, A.; Palacio, C. Composition of tantalum nitride thin films grown by low-energy nitrogen implantation: A factor analysis study of the Ta 4f XPS core level. Appl. Phys. A 2005, 81, 1405–1410. [Google Scholar] [CrossRef] [Green Version]
- Lenglet, M.; d’Huysser, A.; Arsène, J.; Bonnelle, J.P.; Jørgensen, C.K. XANES, x-ray photoelectron and optical spectra of divalent nickel at the crystallographic transition in NiCr2O4 and the Ni1-xCuxCr2O4 system: Correlation with the Jahn-Teller effect. J. Phys. C Solid State Phys. 1986, 19, L363–L368. [Google Scholar] [CrossRef]
- Lorenz, P.; Finster, J.; Wendt, G.; Salyn, J.V.; Zumadilov, E.K.; Nefedov, V.I. Esca investigations of some NiO/SiO2 and NiO-Al2O3/SiO2 catalysts. J. Electron Spectrosc. Relat. Phenom. 1979, 16, 267–276. [Google Scholar] [CrossRef]
- Shalvoy, R.B.; Reucroft, P.J.; Davis, B.H. Characterization of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy. J. Catal 1979, 56, 336–348. [Google Scholar] [CrossRef]
- Malherbe, J.B.; Hofmann, S.; Sanz, J.M. Preferential sputtering of oxides. A comparison of model predictions with experimental data. Appl. Surf. Sci. 1986, 27, 355–365. [Google Scholar] [CrossRef]
- Benito, N.; Palacio, C. Nanostructuring of Ta2O5 surfaces by low energy Ar+ bombardment. Appl. Surf. Sci. 2015, 351, 753–759. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.B.; Littmark, U. The Stopping and Range of Ions in Matter Vol 1; Pergamon: New York, NY, USA, 1985; Available online: https://www.SRIM.org (accessed on 4 February 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arranz, A.; Palacio, C. Influence of X Cation Covalence in the Formation of Ni-O-X Mixed Oxides by Reactive Ion Beam Mixing of Ni/X Interfaces. Crystals 2023, 13, 345. https://doi.org/10.3390/cryst13020345
Arranz A, Palacio C. Influence of X Cation Covalence in the Formation of Ni-O-X Mixed Oxides by Reactive Ion Beam Mixing of Ni/X Interfaces. Crystals. 2023; 13(2):345. https://doi.org/10.3390/cryst13020345
Chicago/Turabian StyleArranz, Antonio, and Carlos Palacio. 2023. "Influence of X Cation Covalence in the Formation of Ni-O-X Mixed Oxides by Reactive Ion Beam Mixing of Ni/X Interfaces" Crystals 13, no. 2: 345. https://doi.org/10.3390/cryst13020345
APA StyleArranz, A., & Palacio, C. (2023). Influence of X Cation Covalence in the Formation of Ni-O-X Mixed Oxides by Reactive Ion Beam Mixing of Ni/X Interfaces. Crystals, 13(2), 345. https://doi.org/10.3390/cryst13020345