Hydrogen Bond-Directed Self-Assembly of a Novel Pyrene Derivative
Abstract
:1. Introduction
2. Materials and Method
2.1. Experimental Method
2.1.1. Synthesis of Compound 4-Iodo-N-octylbenzamide (1)
2.1.2. Synthesis of Compound N-Octyl-4-((trimethylsilyl)ethynyl)benzamide (2)
2.1.3. Synthesis of Compound 4-ethynyl-N-octylbenzamide (3)
2.1.4. Synthesis of Compound TAPy
3. Results and Discussion
3.1. Preparation Method
3.2. UV-Vis and PL Spectroscopy
3.3. Electrochemical Properties
3.4. Self-Assembly Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, F.; Cheng, S.; Zhang, X.; Ren, X.; Li, R.; Dong, H.; Hu, W. 2D organic materials for optoelectronic applications. Adv. Mater. 2018, 30, 1702415. [Google Scholar] [CrossRef]
- Han, J.; Guo, S.; Lu, H.; Liu, S.; Zhao, Q.; Huang, W. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Opt. Mater. 2018, 6, 1800538. [Google Scholar] [CrossRef]
- Liu, H.A.; Zhai, J.; Jiang, L. The research progress in self-assembly of nano-materials. Chin. J. Inorg. Chem. 2006, 22, 585. [Google Scholar]
- De Cuendias, A.; Hiorns, R.C.; Cloutet, E.; Vignau, L.; Cramail, H. Conjugated rod–coil block copolymers and optoelectronic applications. Polym. Int. 2010, 59, 1452–1476. [Google Scholar] [CrossRef]
- Chen, H.L.; Guo, X.F. Unique Role of Self-Assembled Monolayers in Carbon Nanomaterial-Based Field-Effect Transistors. Small 2013, 9, 1144–1159. [Google Scholar] [CrossRef]
- McDowell, C.; Bazan, G.C. Organic solar cells processed from green solvents. Curr. Opin. Green Sustain. Chem. 2017, 5, 49–54. [Google Scholar] [CrossRef]
- Au-Duong, A.N.; Kuo, C.C.; Chiu, Y.C. Self-assembled oligosaccharide-based block copolymers as charge-storage materials for memory devices. Polym. J. 2018, 50, 649–658. [Google Scholar] [CrossRef]
- Brett, C.M.A. Perspectives and challenges for self-assembled layer-by-layer biosensor and biomaterial architectures. Curr. Opin. Electrochem. 2018, 12, 21–26. [Google Scholar] [CrossRef]
- Duan, Y.; Qian, J.; Guo, J.; Jiang, S.; Yang, C.; Wang, H.; Wang, Q.; Shi, Y.; Li, Y. Patterning 2D Organic Crystal-line Semiconductors via Thermally Induced Self-Assembly. Adv. Electron. Mater. 2020, 9, 2000438. [Google Scholar] [CrossRef]
- Li, Y.-X.; Dong, X.-M.; Yu, M.-N.; Zhang, H.-S.; Eginligil, M.; Nie, Y.-J.; Xie, L.-H.; Lin, Z.-Q.; Liu, J.-Q.; Huang, W. 3D Steric Bulky Semiconduc-tor Molecules toward Organic Optoelectronic Nanocrystals. ACS Mater. Lett. 2021, 3, 1799–1818. [Google Scholar] [CrossRef]
- Walther, A.; Muller, A.H.E. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 2013, 113, 5194–5261. [Google Scholar] [CrossRef] [PubMed]
- Aida, T.; Meijer, E.W.; Stupp, S.I. Functional supramolecular polymers. Science 2012, 335, 813–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 2009, 8, 781–792. [Google Scholar] [CrossRef]
- Li, T.; Lu, X.-M.; Zhang, M.-R.; Hu, K.; Li, Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact. Mater. 2022, 11, 268–282. [Google Scholar] [CrossRef]
- Xiang, Z.; Wang, X.; Zhang, X.; Shi, Y.; Cai, L.; Zhu, X.; Dong, Y.; Lu, W. Self-assembly of nano/microstructured 2D Ti3CNTx MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application. Carbon 2022, 189, 305–318. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Long, G.; Li, Y.; Ganguly, R.; Zhang, M.; Aratani, N.; Yamada, H.; Liu, M.; Zhang, Q. Pyrene-Containing Twistarene: Twelve Benzene Rings Fused in a Row. Angew. Chem. Int. Ed. 2018, 57, 13555–13559. [Google Scholar] [CrossRef]
- Liu, X.; Tian, F.; Han, Y.; Song, T.; Zhao, X.; Xiao, J. Synthesis, physical properties and electroluminescence of functionalized pyrene derivative. Dye. Pigment. 2019, 167, 22–28. [Google Scholar] [CrossRef]
- Iwasaki, T.; Murakami, S.; Takeda, Y.; Fukuhara, G.; Tohnai, N.; Yakiyama, Y.; Sakurai, H.; Kambe, N. Molecular Packing and Solid-State Photophysical Properties of 1,3,6,8-Tetraalkylpyrenes. Chem. A Eur. J. 2019, 25, 14817–14825. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Wang, L.; Li, Z.; Cui, Q.; Zhang, H.; Yang, H. Novel asymmetrical pyrene derivatives as light emitting materials: Synthesis and photophysics. J. Lumin. 2012, 132, 1010–1014. [Google Scholar] [CrossRef]
- Diring, S.; Camerel, F.; Donnio, B.; Dintzer, T.; Toffanin, S.; Capelli, R.; Muccini, M.; Ziessel, R. Luminescent ethynyl-pyrene liquid crystals and gels for optoelectronic devices. J. Am. Chem. Soc. 2009, 131, 18177–18185. [Google Scholar] [CrossRef]
- Ogino, K.; Iwashima, S.; Inokuchi, H.; Harada, Y. Photoelectric emission and electrical conductivity of the cesium complex with pyrene derivatives. Bull. Chem. Soc. Jpn. 1965, 38, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Seri, M.; Marrocchi, A. The carbon–carbon triple bond as a tool to design organic semiconductors for photovoltaic applications: An assessment of prospects and challenges. J. Mater. Chem. C. 2021, 9, 16164–16186. [Google Scholar] [CrossRef]
- Broggi, A.; Tomasi, I.; Bianchi, L.; Marrocchi, A.; Vaccaro, L. Small Molecular Aryl Acetylenes: Chemically Tailoring High-Efficiency Organic Semiconductors for Solar Cells and Field-Effect Transistors. ChemPlusChem 2014, 79, 486–507. [Google Scholar] [CrossRef] [PubMed]
- Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chem. Soc. Rev. 2015, 44, 1922–1947. [Google Scholar] [CrossRef] [PubMed]
- Crouch, R.D. Selective deprotection of Silyl ethers crossmark. Tetrahedron 2013, 69, 2383–2417. [Google Scholar] [CrossRef]
- Khan, N.; Brettmann, B. Intermolecular interactions in polyelectrolyte and surfactant complexes in solution. Polymers 2018, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Jin, Z.; Tang, J.; Liang, P.; Mi, Y.; Miao, Z.; Zhang, Y.; Yang, H. Photophysical and self-assembly properties of asymmetrical multi-aralkyl and arylaldehyde substituted pyrene derivatives. Tetrahedron 2012, 68, 6338–6342. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Gao, H.; Yang, Z.; Xing, Y.; Cao, H.; He, W.; Wang, H.; Gu, J.; Hu, H. Nonlinear optical properties of symmetrical and asymmetrical porphyrin derivatives with click chemistry modification. Dye. Pigment. 2016, 134, 155–163. [Google Scholar] [CrossRef]
- Song, Y.; Osherov, A.; Bulović, V.; Kong, J. Graphene–perovskite Schottky barrier solar cells. Adv. Sustain. Syst. 2018, 2, 1700106. [Google Scholar] [CrossRef]
- Mi, Y.; Liang, P.; Yang, Z.; Wang, D.; Cao, H.; He, W.; Yang, H.; Yu, L. Application of Near-IR Absorption Porphyrin Dyes Derived from Click Chemistry as Third-Order Nonlinear Optical Materials. ChemistryOpen 2016, 5, 71–77. [Google Scholar] [CrossRef]
- Wang, D.; Mi, Y.-S.; Tang, J.-K.; Liang, P.-X.; Jin, Z.-K.; Yang, Z.; Yang, H. Disk-shaped symmetric hexa-substituted triphenylene derivatives: Synthesis, physical properties and self-assembly. Chem. Res. Chin. Univ. 2013, 29, 495–499. [Google Scholar] [CrossRef]
- Lee, S.; Oh, S.; Lee, J.; Malpani, Y.; Jung, Y.S.; Kang, B.; Lee, J.Y.; Ozasa, K.; Isoshima, T.; Lee, S.Y.; et al. Stimulus-responsive azobenzene supramolecules: Fibers, gels, and hollow spheres. Langmuir 2013, 29, 5869–5877. [Google Scholar] [CrossRef] [PubMed]
Solvent | λabs (max/nm) | λem (max/nm) | Stokes Shift (cm−1) |
---|---|---|---|
DCM (Dichloromethane) | 348, 474 | 490, 525 | 868 |
TCM (Trichloromethane) | 348, 474 | 492, 527 | 771 |
THF (Tetrahydrofuran) | 346, 474 | 490,523 | 688 |
DMF (N,N-Dimethylformamide) | 348, 476 | 494, 527 | 765 |
NMP (N-Methylpyrrolidone) | 350, 480 | 496,530 | 672 |
Compd | Egopt [eV]a | Egelec [eV] | EgDFT [eV] | Eoxonset [V] | HOMO [eV] | Eredonset [V] | LUMO [eV] |
---|---|---|---|---|---|---|---|
TAPy | 2.38 | 2.10 | 2.48 | 0.91 | −5.51 | −1.19 | −3.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zhao, Y.; Mi, Y.; Fang, F.; Zhang, H.; Guo, Z.; Zhao, Y.; Wang, D. Hydrogen Bond-Directed Self-Assembly of a Novel Pyrene Derivative. Crystals 2023, 13, 342. https://doi.org/10.3390/cryst13020342
Yu Y, Zhao Y, Mi Y, Fang F, Zhang H, Guo Z, Zhao Y, Wang D. Hydrogen Bond-Directed Self-Assembly of a Novel Pyrene Derivative. Crystals. 2023; 13(2):342. https://doi.org/10.3390/cryst13020342
Chicago/Turabian StyleYu, Yang, Yuzhen Zhao, Yongsheng Mi, Fengmei Fang, Huimin Zhang, Zhun Guo, Yang Zhao, and Dong Wang. 2023. "Hydrogen Bond-Directed Self-Assembly of a Novel Pyrene Derivative" Crystals 13, no. 2: 342. https://doi.org/10.3390/cryst13020342
APA StyleYu, Y., Zhao, Y., Mi, Y., Fang, F., Zhang, H., Guo, Z., Zhao, Y., & Wang, D. (2023). Hydrogen Bond-Directed Self-Assembly of a Novel Pyrene Derivative. Crystals, 13(2), 342. https://doi.org/10.3390/cryst13020342