Unprecedented Coordination Compounds with 4,4′-Diaminodiphenylethane as a Supramolecular Agent and Ditopic Ligand: Synthesis, Crystal Structures and Hirshfeld Surface Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Measurements
2.2. Synthesis
2.2.1. [Cd(2,2′-bpy)3](ClO4)2](dadpe)(4,4′-bpy) (1)
2.2.2. [Ni(dadpe)2(H2O)4](SO4)·H2O (2)
2.2.3. {[Zn(NO3)(dadpe)(dmf)2](NO3)}n (3)
2.2.4. {[Cd(2,2′-bpy)2(dadpe)](ClO4)2}n (4)
2.2.5. {[Cd(4,4′-bpy)2(H2O)2](ClO4)2(dadpe)(EtOH)2}n (5)
2.2.6. {[Co(4,4′-bpy)2(H2O)2](BF4)2(dadpe)(EtOH)2}n (6)
2.2.7. {[Cd(adi)(dadpe)](H2adi)}n (7)
2.3. Single Crystal X-ray Analysis
3. Results and Discussion
3.1. FTIR Characterization of 1–7
3.2. X-ray Study
3.2.1. Mononuclear Complexes
3.2.2. 1D Coordination Polymers
3.2.3. 2D Coordination Polymers
3.3. Hirshfeld Surface Modeling of Coordination Compounds 1–3, 7
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Noro, S.; Kitaura, R.; Kondo, M.; Kitagawa, S.; Ishii, T.; Matsuzaka, H.; Yamashita, M. Framework engineering by anions and porous functionalities of Cu(II)/4,4’-bpy coordination polymers. J. Am. Chem. Soc. 2002, 124, 2568–2583. [Google Scholar] [CrossRef] [PubMed]
- McManus, G.; Perry IV, J.J.; Perry, M.; Wagner, B.D.; Zaworotko, M.J. Exciplex Fluorescence as a Diagnostic Probe of Structure in Coordination Polymers of Zn2+ and 4,4’-Bipyridine Containing Intercalated Pyrene and Enclathrated Aromatic Solvent Guests. J. Am. Chem. Soc. 2007, 129, 9094–9101. [Google Scholar] [CrossRef] [PubMed]
- Melnic, E.; Coropceanu, E.B.; Forni, A.; Cariati, E.; Kulikova, O.V.; Siminel, A.V.; Kravtsov, V.C.; Fonari, M. Discrete Complexes and One-Dimensional Coordination Polymers with [Cu(II)(2,2′-bpy)]2+ and [Cu(II)(phen)]2+ Corner Fragments: Insight into Supramolecular Structure and Optical Properties. Cryst Growth Des. 2016, 16, 6275–6285. [Google Scholar] [CrossRef]
- Croitor, L.; Coropceanu, E.B.; Chisca, D.; Baca, S.G.; van Leusen, J.; Kogerler, P.; Bourosh, P.; Kravtsov, V.C.; Grabco, D.; Pyrtsac, C.; et al. Effects of Anion and Bipyridyl Bridging Ligand Identity on the Co(II) Coordination Networks. Cryst. Growth Des. 2014, 14, 3015–3025. [Google Scholar] [CrossRef]
- Du, M.; Li, C.-P.; Liu, C.-S.; Fang, S.-M. Design and Construction of Coordination Polymers with Mixed-Ligand Synthetic Strategy. Coord. Chem. Rev. 2013, 257, 1282–1305. [Google Scholar] [CrossRef]
- Pal, A.; Chand, S.; Senthilkumar, S.; Neogi, S.; Das, M.C. Structural Variation of Transition Metal Coordination Polymers Based on Bent Carboxylate and Flexible Spacer Ligand: Polymorphism, Gas Adsorption and SC-SC Transmetallation. CrystEngComm 2016, 18, 4323–4335. [Google Scholar] [CrossRef]
- Lozovan, V.; Kravtsov, V.C.; Coropceanu, E.B.; Siminel, N.; Kulikova, O.V.; Costriucova, N.V.; Fonari, M.S. Seven Zn(II) and Cd(II) 1D Coordination Polymers Based on Azine Donor Linkers and Decorated with 2-Thiophenecarboxylate: Syntheses, Structural Parallels, Hirshfeld Surface Analysis, and Spectroscopic and Inclusion Properties. Polyhedron 2020, 188, 114702. [Google Scholar] [CrossRef]
- Czylkowska, A.; Pietrzak, A.; Szczesio, M.; Rogalewicz, B.; Wojciechowski, J. Crystal Structures, Hirshfeld Surfaces, and Thermal Study of Isostructural Polymeric Ladders of La(III) and Sm(III) Coordination Compounds with 4,4’-Bipyridine and Dibromoacetates. Materials 2020, 13, 4274. [Google Scholar] [CrossRef]
- Carlucci, L.; Ciani, G.; Proserpio, D.H.; Porta, F. New metal–organic frameworks and supramolecular arrays assembled with the bent ditopic ligand 4,4-diaminodiphenylmethane. CrystEngComm 2006, 8, 696–706. [Google Scholar] [CrossRef]
- Luo, J.; Hong, M.; Wang, R.; Cao, R.; Shi, Q.; Weng, J. Self-Assembly of Five Cadmium(II) Coordination Polymers from 4,4’-Diaminodiphenylmethane. Eur. J. Inorg. Chem. 2003, 9, 1778–1784. [Google Scholar] [CrossRef]
- Chisca, D.; Croitor, L.; Melnic, E.; Petuhov, O.; Kulikova, O.; Fonari, M.S. Six transition metal–organic materials with the ditopic 4,4’-diaminodiphenylmethane ligand: Synthesis, structure characterization and luminescent properties. Polyhedron 2020, 192, 114844. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, X.-H.; Zhao, Y.; Wang, P.; Liu, Y.; Azam, M.; Al-Resayes, S.I.; Lu, Y.; Sun, W.Y. Luminescent Cd(II)–organic frameworks with chelating NH2 sites for selective detection of Fe(III) and antibiotics. J. Mat. Chem. A. 2017, 5, 15797–15807. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. B 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Kokunov, Y.V.; Kovalev, V.V.; Gorbunova, Y.E. Layered Structure of the Silver Coordination Polymer with Nonrigid Aromatic Diamine {Ag[CH2(C6H4NH2)2]2(CH3C6H4NH2)}NO3. Russ. J. Inorg. Chem. 2007, 52, 1877–1882. [Google Scholar] [CrossRef]
- Kokunov, Y.V.; Gorbunova, Y.E.; Kovalev, V.V. Synthesis and Structure of Silver Coordination Polymer with Extended Ditopic Ligand Containing Terminal Amino Groups [Ag(C24H28N2)1.5]NO3. Russ. J. Inorg. Chem. 2012, 57, 953–958. [Google Scholar] [CrossRef]
- Kokunov, Y.V.; Gorbunova, Y.E.; Kovalev, V.V.; Kozyukhin, S.A. Synthesis, Crystal Structure, and Luminescence Properties of the Tetranuclear Complex of Cadmium(II) Acetate with 4,4’(1,4-Phenylenediisopropylidene)bisaniline. Russ. J. Inorg. Chem. 2012, 57, 1553–1558. [Google Scholar] [CrossRef]
- Ltaief, H.; Ben Ali, S.; Mahroug, A.; Ferretti, V.; Graça, M.P.F.; Belhouchet, M. A new copper hybrid compound based on 3,3’-diaminodiphenylsulfone as ligand: Growth, crystal structure, spectroscopic analysis, and thermal behavior. J. Mol. Struct. 2023, 1273, 134334. [Google Scholar] [CrossRef]
- Ltaief, H.; Mahroug, A.; Paoli, P.; Rossi, P.; Belhouchet, M. A new hybrid compound based on mercury and 3,3′-diaminobiphenylsulfone studied by a combined experimental and theoretical approach. J. Mol. Struct. 2020, 1220, 128760. [Google Scholar] [CrossRef]
- Smirnov, A.N.; Odintsova, O.V.; Starova, G.L.; Solovyeva, E.V. X-ray and vibrational analysis of amino and chloro bibenzyl 4,4′-derivatives supported by quantum chemical calculations. J. Mol. Struct. 2020, 1202, 127287. [Google Scholar] [CrossRef]
- Giastas, P.; Yannakopoulou, K.; Mavridis, I.M. Molecular structures of the inclusion complexes b-cyclodextrin ± 1,2-bis(4-aminophenyl)ethane and b-cyclodextrin ± 4,4’-diaminobiphenyl; packing of dimeric b-cyclodextrin inclusion complexes. Acta Cryst. 2003, B59, 287–299. [Google Scholar] [CrossRef]
- Behera, N.; Duan, J.; Jin, W.; Kitagawa, S. The chemistry and applications of flexible porous coordination polymers. EnergyChem 2021, 3, 100067. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. 2009, D65, 148–155. [Google Scholar] [CrossRef]
- David, A. Thornton, D.A. Metal Complexes of Aniline: Infrared and Raman Spectra. J. Coord. Chem. 1991, 24, 261–289. [Google Scholar] [CrossRef]
- Park, H.M.; Hwang, I.H.; Bae, J.M.; Jo, Y.D.; Kim, C.; Kim, H.-Y.; Kim, Y.; Kim, S.-J. Anion Effects on Crystal Structures of CdII Complexes Containing 2,2’-Bipyridine: Photoluminescence and Catalytic Reactivity. Bull. Korean Chem. Soc. 2012, 33, 1517. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, Z.; Lu, L. Tris(2,2’-bipyridine-kappa2N,N’)cadmium(II) bis(perchlorate) hemihydrate. Acta Crystallogr. 2009, E65, m7. [Google Scholar] [CrossRef]
- Vaiana, L.; Platas-Iglesias, C.; Esteban-Gomez, D.; Avecilla, F.; de Blas, A.; Rodriguez-Blas, T. Receptor versus Counterion: Capability of N,N′-Bis(2-aminobenzyl)-diazacrowns for Giving Endo- and/or Exocyclic Coordination of ZnII. Eur. J. Inorg. Chem. 2007, 2007, 1874–1883. [Google Scholar] [CrossRef]
- Kong, X.-J.; Ren, Y.-P.; Zheng, P.-Q.; Long, Y.-X.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S. Construction of Polyoxometalates-Based Coordination Polymers through Direct Incorporation between Polyoxometalates and the Voids in a 2D Network. Inorg. Chem. 2006, 45, 10702–10711. [Google Scholar] [CrossRef]
- Lu, J.Y.; Fernandez, W.A.; Ge, Z.; Abboud, K.A. A novel two-fold interpenetrating 3D 42.84 network self-assembled from a new 1D coordination polymer. New J. Chem. 2005, 29, 434–438. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta. 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer; University of Western Australia: Perth, Australia, 2012. [Google Scholar]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
CCDC deposition number | 2236422 | 2236423 | 2236424 | 2236425 | 2236426 | 2236427 | 2236428 |
Empirical formula | C42H36CdCl2N8O8 | C28H44N4NiO10S | C20H30N6O8Zn | C34H32CdCl2N6O8 | C38H48CdCl2N6O12 | C38H48B2CoF8N6O4 | C26H34CdN2O8 |
T, K | 293(2) | 293(2) | 293(2) | 293(2) | 293(2) | 293(2) | 293(2) |
FW (g mol−1) | 964.09 | 687.44 | 547.87 | 835.95 | 964.12 | 885.37 | 614.95 |
Crystal system | Triclinic | Monoclinic | Orthorhombic | Monoclinic | Monoclinic | Monoclinic | Monoclinic |
Space group | P-1 | P21/c | Pbca | P21/c | C2/c | C2/c | P2/c |
a/Å | 11.4066(6) | 18.195(2) | 17.2741(10) | 10.5752(5) | 19.5958(5) | 19.0858(14) | 13.0429(4) |
b/Å | 13.2070(6) | 10.053(2) | 10.4778(4) | 13.6755(6) | 11.7421(2) | 11.4429(4) | 5.1903(2) |
c/Å | 14.1328(8) | 9.1989(7) | 28.0153(11) | 24.4455(19) | 20.1263(6) | 22.5537(18) | 19.9688(6) |
α/deg | 96.087(4) | 90 | 90 | 90 | 90 | 90 | 90 |
β/deg | 104.337(5) | 101.660(7) | 90 | 91.488(5) | 108.939(3) | 121.947(11) | 100.079(3) |
γ/deg | 96.049(4) | 90 | 90 | 90 | 90 | 90 | 90 |
V/Å3 | 2031.89(19) | 1648.0(3) | 5070.6(4) | 3534.1(4) | 4380.3(2) | 4179.6(6) | 1330.96(8) |
Z | 2 | 2 | 8 | 4 | 4 | 4 | 2 |
Dcalcd Mg/m3 | 1.576 | 1.385 | 1.435 | 1.571 | 1.462 | 1.407 | 1.534 |
µ/mm−1 | 0.734 | 0.711 | 1.023 | 0.829 | 0.686 | 0.493 | 0.871 |
F(000) | 980 | 728 | 2288 | 1696 | 1984 | 1836 | 632 |
Reflections collected | 11770 | 5343 | 12232 | 13628 | 7798 | 7782 | 4527 |
Independent reflections | 7176 [R(int) = 0.0303] | 2906 [R(int) = 0.0242] | 4692 [R(int) = 0.0615] | 6523 [R(int) = 0.0471] | 4070 [R(int) = 0.0204] | 4083 [R(int) = 0.0293] | 2620 [R(int) = 0.0200] |
Data/restraints/parameters | 7176/92/572 | 2906/22/239 | 4692/19/320 | 6523/82/524 | 4070/169/341 | 4083/114/339 | 2620/15/193 |
GOF | 1.001 | 1.000 | 1.000 | 1.005 | 1.092 | 0.999 | 1.004 |
R indices [I > 2σ(I)], R1, wR2 | 0.0464, 0.1036 | 0.0498, 0.1413 | 0.0559, 0.0797 | 0.0600, 0.1230 | 0.0373, 0.0916 | 0.0525, 0.1419 | 0.0293, 0.0720 |
R indices (all data), R1, wR2 | 0.0630, 0.1139 | 0.0711, 0.1573 | 0.1162, 0.0938 | 0.1301, 0.1524 | 0.0441, 0.0949 | 0.0734, 0.1545 | 0.0336, 0.0749 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craciun, N.; Chisca, D.; Melnic, E.; Fonari, M.S. Unprecedented Coordination Compounds with 4,4′-Diaminodiphenylethane as a Supramolecular Agent and Ditopic Ligand: Synthesis, Crystal Structures and Hirshfeld Surface Analysis. Crystals 2023, 13, 289. https://doi.org/10.3390/cryst13020289
Craciun N, Chisca D, Melnic E, Fonari MS. Unprecedented Coordination Compounds with 4,4′-Diaminodiphenylethane as a Supramolecular Agent and Ditopic Ligand: Synthesis, Crystal Structures and Hirshfeld Surface Analysis. Crystals. 2023; 13(2):289. https://doi.org/10.3390/cryst13020289
Chicago/Turabian StyleCraciun, Nicoleta, Diana Chisca, Elena Melnic, and Marina S. Fonari. 2023. "Unprecedented Coordination Compounds with 4,4′-Diaminodiphenylethane as a Supramolecular Agent and Ditopic Ligand: Synthesis, Crystal Structures and Hirshfeld Surface Analysis" Crystals 13, no. 2: 289. https://doi.org/10.3390/cryst13020289
APA StyleCraciun, N., Chisca, D., Melnic, E., & Fonari, M. S. (2023). Unprecedented Coordination Compounds with 4,4′-Diaminodiphenylethane as a Supramolecular Agent and Ditopic Ligand: Synthesis, Crystal Structures and Hirshfeld Surface Analysis. Crystals, 13(2), 289. https://doi.org/10.3390/cryst13020289