Recent Progress in True 3D Display Technologies Based on Liquid Crystal Devices
Abstract
:1. Introduction
2. Multi-Plane Displays Based on LC Devices
2.1. Based on LC Scattering Shutter
2.2. Based on Refractive LC Lens
2.3. Based on Pancharatnam–Berry Phase LC Lens
2.4. Based on Planar Alvarez Tunable LC Lens
2.5. Based on CLC Films
2.6. Based on LC Polarization Switch
3. Super Multi-View Displays
4. Holographic Displays
5. Integral Imaging Based on LC Lens Array
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci. 1997, 27, 305–379. [Google Scholar] [CrossRef]
- Geffroy, B.; Le Roy, P.; Prat, C. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies. Polym. Int. 2006, 55, 572–582. [Google Scholar] [CrossRef]
- Yang, D.-K.; Wu, S.-T. Fundamentals of Liquid Crystal Devices; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Dodgson, N.A. Autostereoscopic 3D displays. Compute 2005, 38, 31–36. [Google Scholar] [CrossRef]
- Geng, J. Three-dimensional display technologies. Adv. Opt. Photonics 2013, 5, 456–535. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Dong, H.; Alelaiwi, A.; Saddik, A.E. See in 3D: State of the art of 3D display technologies. Multimed. Tools Appl. 2016, 75, 17121–17155. [Google Scholar] [CrossRef]
- Hsiang, E.-L.; Yang, Z.; Yang, Q.; Lai, P.-C.; Lin, C.-L.; Wu, S.-T. AR/VR light engines: Perspectives and challenges. Adv. Opt. Photonics 2022, 14, 783–861. [Google Scholar] [CrossRef]
- Xiong, J.; Hsiang, E.-L.; He, Z.; Zhan, T.; Wu, S.-T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef]
- Zhan, T.; Yin, K.; Xiong, J.; He, Z.; Wu, S.-T. Augmented reality and virtual reality displays: Perspectives and challenges. Iscience 2020, 23, 101397. [Google Scholar] [CrossRef]
- Hua, H.; Javidi, B. A 3D integral imaging optical see-through head-mounted display. Opt. Express 2014, 22, 13484–13491. [Google Scholar] [CrossRef]
- Park, J.-H.; Lee, B. Holographic techniques for augmented reality and virtual reality near-eye displays. Light Adv. Manuf. 2022, 3, 137–150. [Google Scholar] [CrossRef]
- Hoffman, D.M.; Girshick, A.R.; Akeley, K.; Banks, M.S. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vision 2008, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Kim, J.; Hoffman, D.M.; Banks, M.S. Visual discomfort with stereo displays: Effects of viewing distance and direction of vergence-accommodation conflict. In Stereoscopic Displays and Applications XXII; SPIE: San Francisco, CA, USA, 2011. [Google Scholar]
- Ren, H.; Ni, L.X.; Li, H.F.; Sang, X.Z.; Gao, X.; Wang, Q.H. Review on tabletop true 3D display. J. Soc. Inf. Disp. 2020, 28, 75–91. [Google Scholar] [CrossRef]
- Zhang, W.; Sang, X.; Gao, X.; Yu, X.; Gao, C.; Yan, B.; Yu, C. A flipping-free 3D integral imaging display using a twice-imaging lens array. Opt. Express 2019, 27, 32810–32822. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Sain, B.; Wei, Q.; Tang, C.; Li, X.; Weiss, T.; Huang, L.; Wang, Y.; Zentgraf, T. Multichannel vectorial holographic display and encryption. Light Sci. Appl. 2018, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Takaki, Y.; Nago, N. Multi-projection of lenticular displays to construct a 256-view super multi-view display. Opt. Express 2010, 18, 8824–8835. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, W.; Liu, Y.; Wang, Y. Design and implementation of an optical see-through near-eye display combining Maxwellian-view and light-field methods. Opt. Commun. 2022, 510, 127833. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Su, Y. Multiplane displays based on liquid crystals for AR applications. J. Soc. Inf. Disp. 2020, 28, 224–240. [Google Scholar] [CrossRef]
- Tan, G.; Zhan, T.; Lee, Y.-H.; Xiong, J.; Wu, S.-T. Polarization-multiplexed multiplane display. Opt. Lett. 2018, 43, 5651–5654. [Google Scholar] [CrossRef]
- Hu, X.; Hua, H. Design and assessment of a depth-fused multi-focal-plane display prototype. J. Soc. Inf. Disp. 2014, 10, 308–316. [Google Scholar] [CrossRef]
- Rolland, J.P.; Krueger, M.W.; Goon, A. Multifocal planes head-mounted displays. Appl. Opt. 2000, 39, 3209–3215. [Google Scholar] [CrossRef]
- Liu, S.; Hua, H. Time-multiplexed dual-focal plane head-mounted display with a liquid lens. Opt. Lett. 2009, 34, 1642–1644. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Hua, H. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics. Opt. Express 2014, 22, 13896–13903. [Google Scholar] [CrossRef] [PubMed]
- Dunn, D.; Chakravarthula, P.; Dong, Q.; Fuchs, H. Mitigating vergence-accommodation conflict for near-eye displays via deformable beamsplitters. In Digital Optics for Immersive Displays; SPIE: Strasbourg, France, 2018. [Google Scholar]
- Chen, Q.; Peng, Z.; Li, Y.; Liu, S.; Zhou, P.; Gu, J.; Lu, J.; Yao, L.; Wang, M.; Su, Y. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films. Opt. Express 2019, 27, 12039–12047. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-H.; Peng, F.; Wu, S.-T. Fast-response switchable lens for 3D and wearable displays. Opt. Express 2016, 24, 1668–1675. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, Y.; Zhou, P.; Chen, Q.; Su, Y. Reverse-mode PSLC multi-plane optical see-through display for AR applications. Opt. Express 2018, 26, 3394–3403. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Lee, Y.-H.; Tan, G.; Xiong, J.; Yin, K.; Gou, F.; Zou, J.; Zhang, N.; Zhao, D.; Yang, J. Pancharatnam–Berry optical elements for head-up and near-eye displays. JOSA B 2019, 36, D52–D65. [Google Scholar] [CrossRef]
- Suyama, S.; Date, M.; Takada, H. Three-dimensional display system with dual-frequency liquid-crystal varifocal lens. Jpn. J. Appl. Phys. 2000, 39, 480. [Google Scholar] [CrossRef]
- Wilson, A.; Hua, H. Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses. Opt. Express 2019, 27, 15627–15637. [Google Scholar] [CrossRef]
- Chen, H.-S.; Wang, Y.-J.; Chen, P.-J.; Lin, Y.-H. Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens. Opt. Express 2015, 23, 28154–28162. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Tan, G.; Zhan, T.; Weng, Y.; Liu, G.; Gou, F.; Peng, F.; Tabiryan, N.V.; Gauza, S.; Wu, S.-T. Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities. Opt. Data Process. Storage 2017, 3, 79–88. [Google Scholar] [CrossRef]
- Zou, J.; Luo, Z.; Zhao, E.; Rao, Y.; Wu, S.-T. Ultracompact virtual reality system with a Pancharatnam–Berry phase deflector. Opt. Express 2022, 30, 39652–39662. [Google Scholar] [CrossRef] [PubMed]
- Shteyner, E.A.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.-S.; Afanasyev, A.D. Submicron-scale liquid crystal photo-alignment. Soft Matter 2013, 9, 5160–5165. [Google Scholar] [CrossRef]
- Guo, Q.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.S. Polymer and azo-dye composite: A photo-alignment layer for liquid crystals. Liq. Cryst. 2014, 41, 1465–1472. [Google Scholar] [CrossRef]
- Lin, T.; Xie, J.; Zhou, Y.; Zhou, Y.; Yuan, Y.; Fan, F.; Wen, S. Recent advances in photoalignment liquid crystal polarization gratings and their applications. Crystals 2021, 11, 900. [Google Scholar] [CrossRef]
- Xiong, J.; Wu, S.-T. Planar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applications. eLight 2021, 1, 3. [Google Scholar] [CrossRef]
- Zou, J.; Zhan, T.; Xiong, J.; Wu, S.-T. Broadband wide-view Pancharatnam–Berry phase deflector. Opt. Express 2020, 28, 4921–4927. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Li, Y.; Liu, S.; Chen, S.; Su, Y. Fast-response Pancharatnam-Berry phase optical elements based on polymer-stabilized liquid crystal. Opt. Express 2019, 27, 22522–22531. [Google Scholar] [CrossRef]
- Han, Z.; Colburn, S.; Majumdar, A.; Böhringer, K.F. MEMS-actuated metasurface Alvarez lens. Microsyst. Nanoeng. 2020, 6, 79. [Google Scholar] [CrossRef]
- Chen, S.; Lin, J.; He, Z.; Li, Y.; Su, Y.; Wu, S.-T. Planar Alvarez tunable lens based on polymetric liquid crystal Pancharatnam-Berry optical elements. Opt. Express 2022, 30, 34655–34664. [Google Scholar] [CrossRef]
- Mitov, M. Cholesteric liquid crystals with a broad light reflection band. Adv. Mater. 2012, 24, 6260–6276. [Google Scholar] [CrossRef]
- Tamaoki, N. Cholesteric liquid crystals for color information technology. Adv. Mater. 2001, 13, 1135–1147. [Google Scholar] [CrossRef]
- Zhang, W.; Froyen, A.A.; Schenning, A.P.; Zhou, G.; Debije, M.G.; de Haan, L.T. Temperature-responsive photonic devices based on cholesteric liquid crystals. Adv. Photonics Res. 2021, 2, 2100016. [Google Scholar] [CrossRef]
- Love, G.D.; Hoffman, D.M.; Hands, P.J.; Gao, J.; Kirby, A.K.; Banks, M.S. High-speed switchable lens enables the development of a volumetric stereoscopic display. Opt. Express 2009, 17, 15716–15725. [Google Scholar] [CrossRef] [PubMed]
- Gooch, C.; Tarry, H. The optical properties of twisted nematic liquid crystal structures with twist angles ≤ 90 degrees. J. Phys. D Appl. Phys. 1975, 8, 1575. [Google Scholar] [CrossRef]
- Chao, A.; Huang, K.; Tsai, C.; Hung, Y.; Cheng, H.; Yeh, W.; Yu, C.; Wu, H. The Fastest Response TN-Type TFT LCD of the World Likes OCB Level. In SID Symposium Digest of Technical Papers; Wiley: Long Beach, CA, USA. 2007. [Google Scholar]
- Lee, C.-K.; Moon, S.; Lee, S.; Yoo, D.; Hong, J.-Y.; Lee, B. Compact three-dimensional head-mounted display system with Savart plate. Opt. Express 2016, 24, 19531–19544. [Google Scholar] [CrossRef]
- Takaki, Y. Development of super multi-view displays. ITE Trans. Media Technol. Appl. 2014, 2, 8–14. [Google Scholar]
- Liu, L.; Pang, Z.; Teng, D. Super multi-view three-dimensional display technique for portable devices. Opt. Express 2016, 24, 4421–4430. [Google Scholar] [CrossRef]
- Kajiki, Y.; Yoshikawa, H.; Honda, T. Hologramlike video images by 45-view stereoscopic display. In Stereoscopic Displays and Virtual Reality Systems IV; SPIE: San Jose, CA, USA, 1997. [Google Scholar]
- Ueno, T.; Takaki, Y. Super multi-view near-eye display to solve vergence–accommodation conflict. Opt. Express 2018, 26, 30703–30715. [Google Scholar] [CrossRef]
- Liu, L.; Ye, Q.; Pang, Z.; Huang, H.; Lai, C.; Teng, D. Polarization enlargement of FOV in Super Multi-view display based on near-eye timing-apertures. Opt. Express 2022, 30, 1841–1859. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Liu, S.; Su, Y.; Teng, D. Large depth of range Maxwellian-viewing SMV near-eye display based on a Pancharatnam-Berry optical element. IEEE Photonics J. 2021, 14, 1–7. [Google Scholar] [CrossRef]
- Tay, S.; Blanche, P.-A.; Voorakaranam, R.; Tunç, A.; Lin, W.; Rokutanda, S.; Gu, T.; Flores, D.; Wang, P.; Li, G. An updatable holographic three-dimensional display. Nature 2008, 451, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Wakunami, K.; Hsieh, P.-Y.; Oi, R.; Senoh, T.; Sasaki, H.; Ichihashi, Y.; Okui, M.; Huang, Y.-P.; Yamamoto, K. Projection-type see-through holographic three-dimensional display. Nat. Commun. 2016, 7, 12954. [Google Scholar] [CrossRef] [PubMed]
- Kozacki, T.; Chlipala, M. Color holographic display with white light LED source and single phase only SLM. Opt. Express 2016, 24, 2189–2199. [Google Scholar] [CrossRef]
- Lin, S.-F.; Wang, D.; Wang, Q.-H.; Kim, E.-S. Full-color holographic 3D display system using off-axis color-multiplexed-hologram on single SLM. Opt. Lasers Eng. 2020, 126, 105895. [Google Scholar] [CrossRef]
- Li, X.; Chen, C.; Gao, H.; He, Z.; Xiong, Y.; Li, H.; Hu, W.; Ye, Z.; He, G.; Lu, J. Video-rate holographic display using azo-dye-doped liquid crystal. J. Disp. Technol. 2013, 10, 438–443. [Google Scholar] [CrossRef]
- Li, X.; Chen, C.; Li, Y.; Zhou, P.; Jiang, X.; Rong, N.; Liu, S.; He, G.; Lu, J.; Su, Y. High-efficiency video-rate holographic display using quantum dot doped liquid crystal. J. Disp. Technol. 2016, 12, 362–367. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Xiang, Y.; Rong, N.; Zhou, P.; Liu, S.; Lu, J.; Su, Y. Highly photorefractive hybrid liquid crystal device for a video-rate holographic display. Opt. Express 2016, 24, 8824–8831. [Google Scholar] [CrossRef]
- Patel, J.S.; Rastani, K. Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays. Opt. Lett. 1991, 16, 532–534. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Jen, T.-H.; Ting, C.-H.; Huang, Y.-P. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display. Opt. Express 2014, 22, 2714–2724. [Google Scholar] [CrossRef]
- Chu, F.; Wang, D.; Liu, C.; Li, L.; Wang, Q.-H. Multi-view 2D/3D switchable display with cylindrical liquid crystal lens array. Crystals 2021, 11, 715. [Google Scholar] [CrossRef]
- Ren, H.; Fan, Y.-H.; Wu, S.-T. Liquid-crystal microlens arrays using patterned polymer networks. Opt. Lett. 2004, 29, 1608–1610. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Lee, Y.-H.; Chen, R.; Chanda, D.; Wu, S.-T. Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment. Opt. Lett. 2018, 43, 5062–5065. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.; Guo, Y.-Q.; Zhang, Y.-X.; Duan, W.; Zhang, H.-L.; Tian, L.-L.; Li, L.; Wang, Q.-H. Four-mode 2D/3D switchable display with a 1D/2D convertible liquid crystal lens array. Opt. Express 2021, 29, 37464–37475. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.; Chu, F.; Guo, Y.-Q.; Tian, L.-L.; Wang, Q.-H.; Sun, Y.-B. Large aperture liquid crystal lens array using a composited alignment layer. Opt. Express 2018, 26, 9254–9262. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.-L.; Chu, F.; Wang, Q.-H. Compact integral imaging 2D/3D compatible display based on liquid crystal micro-lens array. Liq. Cryst. 2021, 49, 512–522. [Google Scholar] [CrossRef]
- Hassanfiroozi, A.; Huang, Y.-P.; Javidi, B.; Shieh, H.-P.D. Hexagonal liquid crystal lens array for 3D endoscopy. Opt. Express 2015, 23, 971–981. [Google Scholar] [CrossRef]
- Zhang, Y.; Weng, X.; Liu, P.; Wu, C.; Sun, L.; Yan, Q.; Zhou, X.; Guo, T. Electrically high-resistance liquid crystal micro-lens arrays with high performances for integral imaging 3D display. Opt. Commun. 2020, 462, 125299. [Google Scholar] [CrossRef]
- Li, S.-Q.; Xu, X.; Maruthiyodan Veetil, R.; Valuckas, V.; Paniagua-Domínguez, R.; Kuznetsov, A.I. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 2019, 364, 1087–1090. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Y.; Semmen, J.; Rao, Y.; Wu, S.-T. Achromatic diffractive liquid-crystal optics for virtual reality displays. Light Sci. Appl. 2023, 12, 230. [Google Scholar] [CrossRef]
True 3D Displays | LC Devices | Pros | Cons |
---|---|---|---|
Multi-plane display | LC scattering shutter [19,28] | Fast response time | High driving voltage |
Refractive LC lens [32] | Continuous optical power change | Slow response time, small aperture | |
PB phase LC lens [33,40] | Fast response time, polarization dependence, compact | Chromatic dispersion | |
Planar Alvarez tunable lens [42] | Planar device, large adjustment range, compact | Require lateral displacement | |
CLC films [26] | Polarization dependence | Require large Δn LC material to cover the visible light | |
LC polarization switch [27,49] | Fast response time | Require other polarization devices | |
Super multi-view display | PB grating array [55] | High diffraction efficiency, views is significantly reduced | Chromatic dispersion |
Holographic display | Azo dye-doped LC [60] | Video rate | Two-beam interference |
Quantum dot doped LC [61,62] | Video rate, highly photorefractive | Two-beam interference | |
SLM | / | / | |
Integral imaging display | LC lens array [70,72] | Lightweight design, tunable optical power | Limited depth range, low resolution |
LCD | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Li, Y.; Su, Y. Recent Progress in True 3D Display Technologies Based on Liquid Crystal Devices. Crystals 2023, 13, 1639. https://doi.org/10.3390/cryst13121639
Liu S, Li Y, Su Y. Recent Progress in True 3D Display Technologies Based on Liquid Crystal Devices. Crystals. 2023; 13(12):1639. https://doi.org/10.3390/cryst13121639
Chicago/Turabian StyleLiu, Shuxin, Yan Li, and Yikai Su. 2023. "Recent Progress in True 3D Display Technologies Based on Liquid Crystal Devices" Crystals 13, no. 12: 1639. https://doi.org/10.3390/cryst13121639
APA StyleLiu, S., Li, Y., & Su, Y. (2023). Recent Progress in True 3D Display Technologies Based on Liquid Crystal Devices. Crystals, 13(12), 1639. https://doi.org/10.3390/cryst13121639