Ultraviolet Exposure Improves SERS Activity of Graphene-Coated Ag/ZrO2 Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of SERS-Active Substrates
2.3. Few-Layer Graphene Formation and Transfer
2.4. Characterization of the Experimental Samples
2.5. Study of Photocatalytic Activity
3. Results and Discussion
3.1. Structure of the Experimental Samples
3.1.1. ZrO2 and Ag/ZrO2 Substrates
3.1.2. Few-Layer Graphene
3.2. SERS Activity of the Experimental Samples
3.3. Photocatalytic Activity of the Ag/ZrO2 Substrates
3.4. Effect of UV Exposure on SERS Activity of the Gr/Ag/ZrO2 Substrates
4. Conclusions
- Few-layer graphene on Ag-coated zirconia substrates boosts SERS-activity, attributed to enhanced charge transfer from zirconia and silver to analyte molecules via graphene;
- UV exposure, generally, suppresses SERS signals due to zirconia’s photocatalytic activity, but graphene’s integration counters this suppression, emphasizing its role in increasing the SERS signal;
- Our results highlight graphene’s ability to enhance Raman scattering through its versatility in amplifying charge transfer and strengthening electromagnetic interactions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Cheng, Y.; Sun, M. Graphene-based SERS for sensor and catalysis. Appl. Spectrosc. Rev. 2023, 58, 1–38. [Google Scholar] [CrossRef]
- Xu, W.; Mao, N.; Zhang, J. Graphene: A Platform for Surface-Enhanced Raman Spectroscopy. Small 2013, 9, 1206–1224. [Google Scholar] [CrossRef]
- Goncalves, G.; Marques, P.A.A.P.; Granadeiro, C.M.; Nogueira, H.I.S.; Singh, M.K.; Grácio, J. Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth. Chem. Mater. 2009, 21, 4796–4802. [Google Scholar] [CrossRef]
- Jasuja, K.; Berry, V. Implantation and Growth of Dendritic Gold Nanostructures on Graphene Derivatives: Electrical Property Tailoring and Raman Enhancement. ACS Nano 2009, 3, 2358–2366. [Google Scholar] [CrossRef]
- Sil, S.; Kuhar, N.; Acharya, S.; Umapathy, S. Is Chemically Synthesized Graphene ‘Really’ a Unique Substrate for SERS and Fluorescence Quenching? Sci. Rep. 2013, 3, 3336. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Cai, H.; Zhang, W.; Li, X.; Pan, N.; Luo, Y.; Wang, X.; Hou, J.G. Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano 2011, 5, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xu, Y.; Wang, M.; Li, T.; Huo, Y.; Yang, C.; Man, B. Multifunctional paper strip based on GO-veiled Ag nanoparticles with highly SERS sensitive and deliverable properties for high-performance molecular detection. Opt. Express 2018, 26, 10023–10037. [Google Scholar] [CrossRef] [PubMed]
- Zavatski, S.; Khinevich, N.; Girel, K.; Redko, S.; Kovalchuk, N.; Komissarov, I.; Lukashevich, V.; Semak, I.; Mamatkulov, K.; Vorobyeva, M.; et al. Surface Enhanced Raman Spectroscopy of Lactoferrin Adsorbed on Silvered Porous Silicon Covered with Graphene. Biosensors 2019, 9, 34. [Google Scholar] [CrossRef]
- Yi, N.; Zhang, C.; Song, Q.; Xiao, S. A hybrid system with highly enhanced graphene SERS for rapid and tag-free tumor cells detection. Sci. Rep. 2016, 6, 25134. [Google Scholar] [CrossRef]
- Jabłońska, A.; Jaworska, A.; Kasztelan, M.; Berbeć, S.; Pałys, B. Graphene and Graphene Oxide Applications for SERS Sensing and Imaging. Curr. Med. Chem. 2019, 26, 6878–6895. [Google Scholar] [CrossRef]
- Girel, K.; Burko, A.; Zavatski, S.; Barysiuk, A.; Litvinova, K.; Eganova, E.; Tarasov, A.; Novikov, D.; Dubkov, S.; Bandarenka, H. Atomic layer deposition of hafnium oxide on porous silicon to form a template for athermal SERS-active substrates. Appl. Phys. A 2023, 129, 294. [Google Scholar] [CrossRef]
- Song, G.; Cong, S.; Zhao, Z. Defect engineering in semiconductor-based SERS. Chem. Sci. 2022, 13, 1210–1224. [Google Scholar] [CrossRef]
- He, R.; Lai, H.; Wang, S.; Chen, T.; Xie, F.; Chen, Q.; Liu, P.; Chen, J.; Xie, W. Few-layered vdW MoO3 for sensitive, uniform and stable SERS applications. Appl. Surf. Sci. 2020, 507, 145116. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, W.; Liang, Y.; Fu, J.; Zhu, M.; Shi, H.; Lei, S.; Tao, C. Visible-light-driven charge transfer to significantly improve surface-enhanced Raman scattering (SERS) activity of self-cleaning TiO2/Au nanowire arrays as highly sensitive and recyclable SERS sensor. Sens. Actuators B Chem. 2019, 279, 313–319. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, H.; Xia, L.; Wang, Z.; Zhang, C. Gold-Coated Flower-Like TiO2 Microparticles Wrapped with Reduced Graphene Oxide for SERS Monitoring and Photocatalytic Degradation of Organic Pollutants. ACS Appl. Nano Mater. 2022, 5, 15341–15352. [Google Scholar] [CrossRef]
- Panneerselvam, R.; Liu, G.K.; Wang, Y.H.; Liu, J.Y.; Ding, S.Y.; Li, J.F.; Wu, D.Y.; Tian, Z.Q. Surface-Enhanced Raman Spectroscopy: Bottlenecks and Future Directions. Chem. Commun. 2017, 54, 10–25. [Google Scholar] [CrossRef]
- Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M.S.; Zhang, J.; Liu, Z. Can Graphene Be Used as a Substrate for Raman Enhancement? Nano Lett. 2010, 10, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Li, H.; Liusman, C.; Yin, Z.; Wu, S.; Zhang, H. Surface Enhanced Raman Scattering of Ag or Au Nanoparticle-Decorated Reduced Graphene Oxide for Detection of Aromatic Molecules. Chem. Sci. 2011, 2, 1817–1821. [Google Scholar] [CrossRef]
- McPeak, K.M.; Jayanti, S.V.; Kress, S.J.P.; Meyer, S.; Iotti, S.; Rossinelli, A.; Norris, D.J. Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics 2015, 2, 326–333. [Google Scholar] [CrossRef]
- Ciuparu, D.; Ensuque, A.; Shafeev, G.; Bozon-Verduraz, F. Synthesis and apparent bandgap of nanophase zirconia. J. Mater. Sci. Lett. 2000, 19, 931–933. [Google Scholar] [CrossRef]
- Pandiyan, R.; Vinothkumar, V.; Chen, T.W.; Chen, S.M.; Abinaya, M.; Rwei, S.P.; Hsu, H.Y.; Huang, C.W.; Yu, M.C. Synthesis of Ag@ZrO2 Nanoparticles: A Sensitive Electrochemical Sensor for Determination of Antibiotic Drug Tinidazole. Int. J. Electrochem. Sci. 2022, 17, 220414. [Google Scholar] [CrossRef]
- Ama, O.M.; Wilson, A.W.; Ray, S.S. Photoelectrochemical Degradation of Methylene Blue Dye under Visible Light Irradiation Using EG/Ag-ZrO2 Nanocomposite Electrodes. Int. J. Electrochem. Sci. 2019, 14, 9982–10001. [Google Scholar] [CrossRef]
- Shinde, H.M.; Kite, S.V.; Shirke, B.S.; Garadkar, K.M. Eco-Friendly Synthesis of Ag-ZrO2 Nanocomposites for Degradation of Methylene Blue. J. Mater. Sci. Mater. Electron. 2021, 32, 14235–14247. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, J.; Wang, X.; Song, G.; Lu, F.; You, L.; Li, J. Ag Nanoparticles Decorated Ag@ZrO2 Composite Nanospheres as Highly Active SERS Substrates for Quantitative Detection of Hexavalent Chromium in Waste Water. J. Mol. Liq. 2020, 319, 114158. [Google Scholar] [CrossRef]
- Alyea, H.N.; Dutton, F.B. Tested Demonstrations in Chemistry, 6th ed.; Division of Chemical Education of the American Chemical Society: Easton, PA, USA, 1965. [Google Scholar]
- Plasmonics.by. Available online: http://plasmonics.by/en/ (accessed on 2 October 2023).
- Basahel, S.N.; Ali, T.T.; Mokhtar, M.; Narasimharao, K. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 2015, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Ciszak, C.; Mermoux, M.; Gutierrez, G.; Leprêtre, F.; Duriez, C.; Popa, I.; Fayette, L.; Chevalier, S. Raman spectra analysis of ZrO2 thermally grown on Zircaloy substrates irradiated with heavy ion: Effects of oxygen isotopic substitution. J. Raman. Spectrosc. 2019, 50, 425–435. [Google Scholar] [CrossRef]
- Li, C.; Li, M. UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3–ZrO2 and SO42−/ZrO2. J. Raman. Spectrosc. 2002, 33, 301–308. [Google Scholar] [CrossRef]
- Králik, B.; Chang, E.K.; Louie, S.G. Structural properties and quasiparticle band structure of zirconia. Phys. Rev. B 1998, 57, 7027. [Google Scholar] [CrossRef]
- Emeline, A.; Kataeva, G.V.; Litke, A.S.; Rudakova, A.V.; Ryabchuk, V.K.; Serpone, N. Spectroscopic and Photoluminescence Studies of a Wide Band Gap Insulating Material: Powdered and Colloidal ZrO2 Sols. Langmuir 1998, 14, 5011–5022. [Google Scholar] [CrossRef]
- Alekperov, O.; Jahangirli, Z.; Paucar, R. First-principles lattice dynamics and Raman scattering in ionic conductor β-Ag2S: Lattice dynamics and Raman scattering in ionic conductor β-Ag2S. Phys. Status Solidi B 2016, 253, 2049–2055. [Google Scholar] [CrossRef]
- Xiu, Z.; Zhang, Q.; Puppala, H.L.; Colvin, V.L.; Alvarez, P.J.J. Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano Lett. 2012, 12, 4271–4275. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1997; ISBN 9780750633659. [Google Scholar]
- Das, A.; Chakraboty, B.; Sood, A. Raman spectroscopy of graphene on different substrates and influence of defects. Bull. Mater. Sci. 2008, 31, 579–584. [Google Scholar] [CrossRef]
- Calizo, I.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Lett. 2007, 7, 2645–2649. [Google Scholar] [CrossRef]
- Lee, J.E.; Ahn, G.; Shim, J.; Lee, Y.S.; Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 2012, 3, 1024. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2016, 2, 37–54. [Google Scholar] [CrossRef]
- Ferrari, A.; Basko, D. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotech. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.-E.; Yuan, S.; Janssen, G.C.A.M. Optical transmittance of multilayer graphene. Europhys. Lett. 2014, 108, 17007. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef]
- Watanabe, H.; Hayazawa, N.; Inouye, Y.; Kawata, S. DFT Vibrational Calculations of Rhodamine 6G Adsorbed on Silver: Analysis of Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. B 2005, 109, 5012–5020. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, P.; Stockburger, M. Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed on Colloidal Silver. J. Phys. Chem. 1984, 88, 5935–5944. [Google Scholar] [CrossRef]
- Rani, V.; Sharma, A.; Kumar, A.; Singh, P.; Thakur, S.; Singh, A.; Le, Q.V.; Nguyen, V.H.; Raizada, P. ZrO2-Based Photocatalysts for Wastewater Treatment: From Novel Modification Strategies to Mechanistic Insights. Catalysts 2022, 12, 1418. [Google Scholar] [CrossRef]
Step | Starting Temperature, °C | Final Temperature, °C | Time, min | Rate, °C/min |
---|---|---|---|---|
1 | 50 | –2 | 0 | – |
2 | 50 | 300 | 40 | 7.5 |
3 | 300 | 800 | 100 | 5.0 |
4 | 800 | 1300 | 200 | 2.5 |
5 | 1300 | 1530 | 46 | 5.0 |
6 | 1500 | 1530 | 120 | Keeping 1530 °C |
7 | 1530 | 20 | – | Cooling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandarenka, H.; Burko, A.; Laputsko, D.; Dronina, L.; Kovalchuk, N.; Podelinska, A.; Shapel, U.; Popov, A.I.; Bocharov, D. Ultraviolet Exposure Improves SERS Activity of Graphene-Coated Ag/ZrO2 Substrates. Crystals 2023, 13, 1570. https://doi.org/10.3390/cryst13111570
Bandarenka H, Burko A, Laputsko D, Dronina L, Kovalchuk N, Podelinska A, Shapel U, Popov AI, Bocharov D. Ultraviolet Exposure Improves SERS Activity of Graphene-Coated Ag/ZrO2 Substrates. Crystals. 2023; 13(11):1570. https://doi.org/10.3390/cryst13111570
Chicago/Turabian StyleBandarenka, Hanna, Aliaksandr Burko, Diana Laputsko, Lizaveta Dronina, Nikolai Kovalchuk, Alise Podelinska, Uladzislau Shapel, Anatoli I. Popov, and Dmitry Bocharov. 2023. "Ultraviolet Exposure Improves SERS Activity of Graphene-Coated Ag/ZrO2 Substrates" Crystals 13, no. 11: 1570. https://doi.org/10.3390/cryst13111570
APA StyleBandarenka, H., Burko, A., Laputsko, D., Dronina, L., Kovalchuk, N., Podelinska, A., Shapel, U., Popov, A. I., & Bocharov, D. (2023). Ultraviolet Exposure Improves SERS Activity of Graphene-Coated Ag/ZrO2 Substrates. Crystals, 13(11), 1570. https://doi.org/10.3390/cryst13111570