Thickness Nanoarchitectonics with Edge-Enhanced Raman, Polarization Raman, Optoelectronic Properties of GaS Nanosheets Devices
Abstract
:1. Introduction
2. Experimental Sections—Preparation of Gas Nanosheets
3. Results and Discussion
Thickness-Dependent Edge-Enhanced Raman of Gas Nanosheets
4. Polarization Raman of GaS Nanosheets
5. Optoelectronic Properties of GaS Nanosheet Devices with Different Thicknesses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coleman, J.N.; Lotya, M.; öNeill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, H.; Smith, R.J.; et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef]
- Shen, G.; Chen, D.; Chen, P.C.; Zhou, C.W. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures. ACS Nano 2009, 3, 1115–1120. [Google Scholar] [CrossRef]
- Gutiérrez, H.R.; Perea-López, N.; Elías, A.L.; Berkdemir, A.; Wang, B.; Lv, R.; Lxoxpez-Urĺas, F.; Crespi, V.H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454. [Google Scholar] [CrossRef] [PubMed]
- Méndez, B.A.R.; Lopez-Urias, F.; Terrones, M.; Terrones, H. Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology 2009, 20, 325703. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Bai, B.; Liu, J.; Zhang, J.T. Atomically dispersed catalytic sites: A new frontier for cocatalyst/photocatalyst composites toward sustainable fuel and chemical production. Catalysts 2021, 11, 1168. [Google Scholar] [CrossRef]
- Karvonen, L.; Säynätjoki, A.; Mehravar, S.; Rodriguez, R.D.; Hartmann, S.; Zahn, D.R.; Honkanen, S.; Norwood, R.A.; Peyghambarian, N.; Kieu, K.; et al. Investigation of second-and third-harmonic generation in few-layer gallium selenide by multiphoton microscopy. Sci. Rep. 2015, 5, 10334. [Google Scholar] [CrossRef]
- Cui, Y.; Peng, L.; Sun, L.; Qian, Q.; Huang, Y. Two-dimensional few-layer group-III metal monochalcogenides as effective photocatalysts for overall water splitting in the visible range. J. Mater. Chem. A 2018, 6, 22768–22777. [Google Scholar] [CrossRef]
- Zhuang, H.L.; Hennig, R.G. Single-Layer group-III monochalcogenide photocatalysts for water splitting. Chem. Mater. 2013, 25, 3232–3238. [Google Scholar] [CrossRef]
- Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994. [Google Scholar] [CrossRef]
- Buscema, M.; Island, J.O.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; van der Zant, H.S.J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718. [Google Scholar] [CrossRef] [PubMed]
- Brebner, J.L. The optical absorption edge in layer structures. J. Phys. Chem. Solids 1964, 25, 1427–1433. [Google Scholar] [CrossRef]
- Aulich, E.; Brebner, J.L.; Mooser, E. Indirect energy gap in GaSe and GaS. Phys. Status Solidi 1969, 31, 129–131. [Google Scholar] [CrossRef]
- Cingolani, A.; Minafra, A.; Tantalo, P.; Paorici, C. Edge emission in GaSe and GaS. Phys. Status Solidi 1971, 4, K83–K85. [Google Scholar] [CrossRef]
- Adachi, S.; Hamaguchi, C. Resonant Brillouin Scattering in GaSe and GaS. J. Phys. Soc. Japan 1980, 48, 1981–1989. [Google Scholar] [CrossRef]
- Ho, C.H.; Lin, S.L. Optical properties of the interband transitions of layered gallium sulfide. J. Appl. Phys. 2006, 100, 083508. [Google Scholar] [CrossRef]
- Tverjanovich, A.; Khomenko, M.; Bereznev, S.; Fontanari, D.; Sokolov, A.; Usuki, T.; Ohara, K.; Le Coq, D.; Masselin, P.; Bychkov, E. Glassy GaS: Transparent and unusually rigid thin films for visible to mid-IR memory applications. Phys. Chem. Chem. Phys. 2020, 22, 25560–25573. [Google Scholar] [CrossRef]
- Carey, B.J.; Ou, J.Z.; Clark, R.M.; Berean, K.J.; Zavabeti, A.; Chesman, A.S.R.; Russo, S.P.; Lau, D.W.M.; Xu, Z.Q.; Bao, Q.; et al. Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat. Commun. 2017, 8, 14482. [Google Scholar] [CrossRef]
- Jung, C.S.; Shojaei, F.; Park, K.; Oh, J.Y.; Im, H.S.; Jang, D.M.; Park, J.; Kang, H.S. Red-to-Ultraviolet emission tuning of two-dimensional gallium sulfide/selenide. ACS Nano 2015, 9, 9585–9593. [Google Scholar] [CrossRef]
- Harvey, A.; Backes, C.; Gholamvand, Z.; Hanlon, D.; McAteer, D.; Nerl, H.C.; McGuire, E.; Seral-Ascaso, A.; Ramasse, Q.M.; McEvoy, N.; et al. Preparation of gallium sulfide nanosheets by liquid exfoliation and their application as hydrogen evolution catalysts. Chem. Mater. 2015, 27, 3483–3493. [Google Scholar] [CrossRef]
- Zhang, C.; Park, S.-H.; Ronan, O.; Harvey, A.; Seral-Ascaso, A.; Lin, Z.; McEvoy, N.; Boland, C.S.; Berner, N.C.; Duesberg, G.S.; et al. Enabling flexible heterostructures for Li-Ion battery anodes based on nanotube and liquid-phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions. Small 2017, 13, 1701677. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Umemura, N. Sellmeier equations for GaS and GaSe and their applications to the nonlinear optics in GaSxSe1−x. Opt. Lett. 2011, 36, 746–747. [Google Scholar] [CrossRef] [PubMed]
- Opoku, F.; Akoto, O.; Asare-Donkor, N.K.; Adimado, A.A. Defect-engineered two-dimensional layered gallium sulphide molecular gas sensors with ultrahigh selectivity and sensitivity. Appl. Surf. Sci. 2021, 562, 150188. [Google Scholar] [CrossRef]
- Cao, Y.; Cai, K.; Hu, P.; Zhao, L.; Yan, T.; Luo, W.; Zhang, X.; Wu, X.; Wang, K.; Zheng, H. Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors. Sci. Rep. 2015, 5, 8130. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J.; Chen, T.; Shu, Y.; Chang, R.J.; Sheng, Y.; Shautsova, V.; Mkhize, N.; Holdway, P.; Bhaskaran, H.; et al. Controlling defects in continuous 2D GaS films for high-Performance wavelength-tunable UV-Discriminating photodetectors. Adv. Mater. 2020, 32, 1906958. [Google Scholar] [CrossRef]
- Hu, Z.M.; Fei, G.T.; Zhang, L.D. Synthesis and tunable emission of Ga2S3 quantum dots. Mater. Lett. 2019, 239, 17–20. [Google Scholar] [CrossRef]
- Hu, P.; Wang, L.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X.; Wen, Z.; Idrobo, J.C.; Miyamoto, Y.; Geohegan, D.B.; et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654. [Google Scholar] [CrossRef]
- Gutiérrez, Y.; Juan, D.; Dicorato, S.; Santos, G.; Duwe, M.; Thiesen, P.H.; Giangregorio, M.M.; Palumbo, F.; Hingerl, K.; Cobet, C.; et al. Layered gallium sulfide optical properties from monolayer to CVD crystalline thin films. Opt. Express 2022, 30, 27609–27622. [Google Scholar] [CrossRef]
- Sinha, G.; Panda, S.K.; Datta, A.; Chavan, P.G.; Shinde, D.R.; More, M.A.; Patra, A. Controlled growth of well-aligned GaS nanohornlike structures and their field emission properties. ACS Appl. Mater. Interfaces 2011, 3, 2130–2135. [Google Scholar] [CrossRef]
- Lei, L.; Dai, J.; Dong, H.; Geng, Y.; Cao, F.; Wang, C.; Xu, R.; Pang, F.; Liu, Z.X.; Li, F.; et al. Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers. Nat. Commun. 2023, 14, 6320. [Google Scholar] [CrossRef]
- Wang, H.; Yu, L.; Lee, Y.H.; Shi, Y.; Hsu, A.; Chin, M.L.; Li, L.J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680. [Google Scholar] [CrossRef]
- Perkins, F.K.; Friedman, A.L.; Cobas, E.; Campbell, P.M.; Jernigan, G.G.; Jonker, B.T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673. [Google Scholar] [CrossRef]
- Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Dicorato, S.; Gutiérrez, Y.; Giangregorio, M.M.; Palumbo, F.; Bianco, G.V.; Losurdo, M. Interplay between thickness, defects, optical properties, and photoconductivity at the centimeter scale in layered GaS. Nanomaterials 2022, 12, 465. [Google Scholar] [CrossRef]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef]
- Fuhrer, M.S.; Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 2013, 8, 146–147. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Jaramillo, T.F.; Jϕrgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Jastrzebski, C.; Olkowska, K.; Jastrzebski, D.J.; Wierzbicki, M.; Gebicki, W.; Podsiadlo, S. Raman scattering studies on very thin layers of gallium sulfide (GaS) as a function of sample thickness and temperature. J. Phys. Condens. Matter 2019, 31, 075303. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zeng, Z.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.J.; Zhou, F. Synthesis, Evolution of Morphology, Transport Properties for Bi2Te3 Nanoplates. Crystals 2022, 12, 1668. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, X.; Shi, Z.; Zhou, F.; Xiang, S.; Song, K. Implementation of one-way quantum computing with a hybrid solid-state quantum system. Chin. J. Electron. 2017, 26, 27–34. [Google Scholar] [CrossRef]
- Chen, S.; Xiang, S.; Song, K.; Zhao, Y. Influence from cavity decay on entanglement evolution of three superconducting charge qubits coupled to a cavity. Chin. J. Electron. 2014, 23, 157–162. [Google Scholar]
- Tan, L.; Zhou, F.; Zhang, L.; Xiang, S.; Song, K.; Zhao, Y. High-fidelity hyperentangled cluster states of two-photon systems and their applications. Symmetry 2019, 11, 1079. [Google Scholar] [CrossRef]
- Zhang, H.J.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z.; Zhang, S.C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Fang, X.M.; Zhou, F.; Song, K.H. A scheme for realizing quantum information storage and retrieval from quantum memory based on nitrogenvacancy centers. Phys. Rev. A 2012, 86, 052325. [Google Scholar] [CrossRef]
- Yuan, T.; Zhou, F.; Chen, S.; Xiang, S.; Song, K.; Zhao, Y. Multipurpose quantum simulator based on a hybrid solid-state quantum device. Symmetry 2019, 11, 467. [Google Scholar] [CrossRef]
- Zhao, Y.; Mi, X.W.; Xiang, S.; Zhou, F.; Song, K. Entanglement dynamics of three superconducting charge qubits coupled to a cavity. Commun. Theor. Phys. 2011, 55, 775. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, Y.; Zhou, W.; Tang, D. Temperature-dependent raman scattering of large size hexagonal Bi2Se3 single-crystal nanosheets. Appl. Sci. 2018, 8, 1794. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, Y.; Zhou, W.; Tang, D. Temperature dependent raman of BiTe nanotubes. AIP Adv. 2018, 8, 125330. [Google Scholar] [CrossRef]
- Yang, S.; Li, Y.; Wang, X.; Huo, N.; Xia, J.B.; Li, S.S.; Li, J. High performance few-layer GaS photodetector and its unique photo-response in different gas environments. Nanoscale 2014, 6, 2582. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Liu, Y.; Yang, X.; Wang, C.; Xin, W.; Li, Y.; Liu, W.; Xu, H. Suspended few-layer GaS photodetector with sensitive fast response. Mater. Design 2021, 212, 110233. [Google Scholar] [CrossRef]
- Guo, Q.; Ford, G.M.; Hillhouse, H.W.; Agrawal, R. Sulfide nanocrystal inks for dense Cu(In1−xGax)(S1−ySey)2 absorber films and their photovoltaic performance. Nano Lett. 2009, 9, 3060–3065. [Google Scholar] [CrossRef]
- Bokova, M.; Paraskiva, A.; Kassem, M.; Bychkov, E. Raman spectra of MCl-Ga2S3-GeS2 (M = Na, K, Rb) glasses. Pure Appl. Chem. 2022, 94, 181–188. [Google Scholar] [CrossRef]
- Uematsu, T.; Tepakidareekul, M.; Hirano, T.; Torimoto, T.; Kuwabata, S. Facile high-yield synthesis of Ag-In-Ga-S quaternary quantum dots and coating with gallium sulfide shells for narrow band-edge emission. Chem. Mater. 2023, 35, 1094–1106. [Google Scholar] [CrossRef]
- Late, D.J.; Liu, B.; Luo, J.; Yan, A.; Ramakrishna Matte, H.S.S.; Grayson, M.; Rao, C.N.R.; Dravid, V.P. GaS and GaSe ultrathin layer transistors. Adv. Mater. 2012, 24, 3549–3554. [Google Scholar] [CrossRef]
- Schedinm, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blacke, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Senouci, K.; Hachemi, B.; Hachemi, B.; Ko, P.J. 2D gallium sulfide-Based 1D photonic crystal biosensor for glucose concentration detection. Materials 2023, 16, 4621. [Google Scholar] [CrossRef]
- Rai, J.; Gautam, S. Computational quantum chemical analysis of structural and electronic properties of functionalized gallium sulfide (GaS) nanoflakes. Mater. Today Proc. 2023, 16, 4621. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, X.M.; Zhou, F.; Song, K.H. Preparation of N-qubit GHZ state with a hybrid quantum system based on nitrogen-vacancy centers. Chin. Phys. Lett. 2013, 30, 050304. [Google Scholar] [CrossRef]
- Tan, G.J.; Zhao, L.D.; Shi, F.Y.; Doak, J.W.; Lo, S.H.; Sun, H.; Wolverton, C.; Dravid, V.P.; Uher, C.; Kanatzidis, M.G. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J. Am. Chem. Soc. 2014, 136, 7006–7017. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elkader, O.H.; Abdelsalam, H.; Sakr, M.A.S.; Teleb, N.H.; Zhang, Q.F. Electronic and optical properties of finite gallium sulfide nano ribbons: A first-principles study. Crystals 2023, 13, 1215. [Google Scholar] [CrossRef]
- Berkdemir, A.; Gutiérrez, H.R.; Botello-Méndez, A.R.; Perea-López, N.; Elías, A.L.; Chia, C.I.; Wang, B.; Crespi, V.H.; López-Urías, F.; Charlier, J.C.; et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci. Rep. 2013, 3, 1755. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Rahaman, M.; Bejani, M.; Salvan, G.; Lopez-Rivera, S.A.; Pulci, O.; Bechstedt, F.; Zahn, D.R. Vibrational properties of GaSe: A layer dependent study from experiments to theory. Semicond. Sci. Technol. 2018, 33, 125008. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Zhao, Y.; Fu, F.; Liu, L.; Luo, Z. Thickness Nanoarchitectonics with Edge-Enhanced Raman, Polarization Raman, Optoelectronic Properties of GaS Nanosheets Devices. Crystals 2023, 13, 1506. https://doi.org/10.3390/cryst13101506
Zhou F, Zhao Y, Fu F, Liu L, Luo Z. Thickness Nanoarchitectonics with Edge-Enhanced Raman, Polarization Raman, Optoelectronic Properties of GaS Nanosheets Devices. Crystals. 2023; 13(10):1506. https://doi.org/10.3390/cryst13101506
Chicago/Turabian StyleZhou, Fang, Yujing Zhao, Feiya Fu, Li Liu, and Zhixin Luo. 2023. "Thickness Nanoarchitectonics with Edge-Enhanced Raman, Polarization Raman, Optoelectronic Properties of GaS Nanosheets Devices" Crystals 13, no. 10: 1506. https://doi.org/10.3390/cryst13101506
APA StyleZhou, F., Zhao, Y., Fu, F., Liu, L., & Luo, Z. (2023). Thickness Nanoarchitectonics with Edge-Enhanced Raman, Polarization Raman, Optoelectronic Properties of GaS Nanosheets Devices. Crystals, 13(10), 1506. https://doi.org/10.3390/cryst13101506