GaAs Molecular Beam Epitaxy on (110)-Oriented Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Roughness
3.2. Conductivity
3.3. Photoluminescence Spectroscopy
3.4. X-ray Diffraction
3.4.1. Comparative Study of Surface Roughness between Samples
3.4.2. Determination of the Degree of Crystallinity of Films
3.4.3. Determination of the Real Crystal Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, D.; Towe, E. Strain-Generated Internal Fields in Pseudomorphic (In, Ga)As/GaAs Quantum Well Structures on {11l} GaAs Substrates. Jpn. J. Appl. Phys. 1994, 33, 702–708. [Google Scholar] [CrossRef]
- Vaccaro, P.O.; Tominaga, K.; Hosoda, M.; Fujita, K.; Watanabe, T. Quantum-Confined Stark Shift Due to Piezoelectric Effect in InGaAs/GaAs Quantum Wells Grown on (111)A GaAs. Jpn. J. Appl. Phys. 1995, 34, 1362–1366. [Google Scholar] [CrossRef]
- Ilg, M.; Ploog, K.H.; Trampert, A. Lateral piezoelectric fields in strained semiconductor heterostructures. Phys. Rev. B 1994, 50, 17111–17119. [Google Scholar] [CrossRef]
- Holmes, D.M.; Tok, E.S.; Sudijono, J.L.; Jones, T.S.; Joyce, B.A. Surface evolution in GaAs(1 1 0) homoepitaxy; from microscopic to macroscopic morphology. J. Cryst. Growth 1998, 192, 33–46. [Google Scholar] [CrossRef]
- Yerino, C.D.; Liang, B.; Huffaker, D.L.; Simmonds, P.J.; Lee, M.L. Review Article: Molecular beam epitaxy of lattice-matched InAlAs and InGaAs layers on InP (111)A, (111)B, and (110). J. Vac. Sci. Technol. B 2017, 35, 010801. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Hernández, E.; Vázquez-Cortés, D.; Shimomura, S.; Méndez-Garcia, V.H.; López-López, M. Study of the conduction-type conversion in Si-doped (631)A GaAs layers grown by molecular beam epitaxy. Phys. Status Solidi C 2011, 8, 282–284. [Google Scholar] [CrossRef]
- Mendez-Garcia, V.-H.; Shimomura, S.; Gorbatchev, A.Y.; Cruz-Hernández, E.; Vázquez-Cortées, D. Si-doped AlGaAs/GaAs (631)A heterostructures grown by MBE as a function of the As-pressure. J. Cryst. Growth 2015, 425, 85–88. [Google Scholar] [CrossRef]
- Tok, E.S.; Neave, J.H.; Ashwin, M.J.; Joyce, B.A.; Jones, T.S. Growth of Si-doped GaAs(110) thin films by molecular beam epitaxy; Si site occupation and the role of arsenic. J. Appl. Phys. 1998, 83, 4160–4167. [Google Scholar] [CrossRef]
- Sun, D.; Towe, E. Molecular beam epitaxial growth of (Al,Ga)As/GaAs heterostructures and Si doping characterization study on vicinal (110) GaAs substrates. J. Cryst. Growth 1993, 132, 166–172. [Google Scholar] [CrossRef]
- Takano, Y.; Lopez, M.; Torihata, T.; Ikei, T.; Kanaya, Y.; Pak, K.; Yonezu, H. Realization of mirror surface in (111)- and (110)-oriented GaAs by migration-enhanced epitaxy. J. Cryst. Growth 1991, 111, 216–220. [Google Scholar] [CrossRef]
- Holmes, D.M.; Belk, J.G.; Sudijono, J.L.; Neave, J.H.; Jones, T.S.; Joyce, B.A. The nature of island formation in the homoepitaxial growth of GaAs(110). Surf. Sci. 1995, 341, 133–141. [Google Scholar] [CrossRef]
- Tok, E.S.; Jones, T.S.; Neave, J.H.; Zhang, J.; Joyce, B.A. Is the arsenic incorporation kinetics important when growing GaAs(001), (110), and (111)A films? Appl. Phys. Lett. 1997, 71, 3278–3280. [Google Scholar] [CrossRef]
- Wassermeier, M.; Yang, H.; Tornie, E.; Daweritz, L.; Ploog, K. Growth mechanism of GaAs on (110) GaAs studied by high—Energy electron diffraction and atomic force microscopy. J. Vac. Sci. Technol. B 1994, 12, 2574–2578. [Google Scholar] [CrossRef]
- Holland, M.C.; Kean, A.H.; Stanley, C.R. Silicon compensation and scattering mechanisms in two-dimensional electron gases on (110) GaAs. J. Cryst. Growth 1995, 150, 455–459. [Google Scholar] [CrossRef]
- Holmes, D.M.; Belk, J.G.; Sudijono, J.L.; Neave, J.H.; Jones, T.S.; Joyce, B.A. Different growth modes in GaAs(110) homoepitaxy. J. Vac. Sci. Technol. A 1996, 14, 849–853. [Google Scholar] [CrossRef]
- Junming, Z.; Yi, H.; Yongkang, L.; Yi, J.W. Growth and properties of AlGaAs/GaAs heterostructures on GaAs (110) surface. J. Cryst. Growth 1987, 81, 221–223. [Google Scholar] [CrossRef]
- Pfeiffer, L.; West, K.W.; Stormer, H.L.; Eisenstein, J.P.; Baldwin, K.W.; Gershoni, D.; Spector, J. Formation of a high quality two—Dimensional electron gas on cleaved GaAs. Appl. Phys. Lett. 1990, 56, 1697–1699. [Google Scholar] [CrossRef]
- Simmonds, P.J.; Lee, M.L. Tensile-strained growth on low-index GaAs. J. Appl. Phys. 2012, 112, 054313. [Google Scholar] [CrossRef]
- Iba, S.; Fujino, H.; Fujimoto, T.; Koh, S.; Kawaguchi, H. Correlation between electron spin relaxation time and hetero-interface roughness in (110)-oriented GaAs/AlGaAs multiple-quantum wells. Phys. E Low-Dimens. Syst. Nanostruct. 2009, 41, 870–875. [Google Scholar] [CrossRef]
- Fischer, F.; Schuh, D.; Bichler, M.; Abstreiter, G.; Grayson, M.; Neumaier, K. Modulating the growth conditions: Si as an acceptor in (110) GaAs for high mobility p-type heterostructures. Appl. Phys. Lett. 2005, 86, 192106. [Google Scholar] [CrossRef]
- Sørensen, C.B.; Gislason, H.; Hvam, J.M. MBE growth of two-dimensional electron gases on (110) GaAs. J. Cryst. Growth 1997, 175–176, 1097–1101. [Google Scholar] [CrossRef]
- Volkl, R.; Griesbeck, M.; Tarasenko, S.A.; Schuh, D.; Wegscheider, W.; Schuller, C.; Korn, T. Spin dephasing and photoinduced spin diffusion in a high-mobility two-dimensional electron system embedded in a GaAs-(Al,Ga)As quantum well grown in the [110] direction. Phys. Rev. B 2011, 83, 241306. [Google Scholar] [CrossRef] [Green Version]
- Allen, L.T.P.; Weber, E.R.; Washburn, J.; Pao, Y.C. Device quality growth and characterization of (110) GaAs grown by molecular beam epitaxy. Appl. Phys. Lett. 1987, 51, 670–672. [Google Scholar] [CrossRef] [Green Version]
- Allen, L.T.P.; Weber, E.R.; Washburn, J.; Pao, Y.C.; Elliot, A.G. Characterization of surface faceting on (110)GaAs/GaAs grown by molecular beam epitaxy. J. Cryst. Growth 1988, 87, 193–200. [Google Scholar] [CrossRef]
- Sato, M.; Maehashi, K.; Asahi, H.; Hasegawa, S.; Nakashima, H. MBE growth of AlGaAs/GaAs superlattices on GaAs (110) substrates. Superlattices Microstruct. 1990, 7, 279–282. [Google Scholar] [CrossRef]
- Tejedor, P.; Smilauer, P.; Joyce, B.A. Growth modes in homoepitaxy on vicinal GaAs(110) surfaces. Surf. Sci. 1999, 424, L309–L313. [Google Scholar] [CrossRef]
- Miyagawa, A.; Yamamoto, T.; Ohnishi, Y.; Nelson, J.T.; Ohachi, T. Silicon doping into MBE-grown GaAs at high arsenic vapor pressures. J. Cryst. Growth 2002, 237−239, 1434–1439. [Google Scholar] [CrossRef]
- Zhou, T.C.; Zhou, X.C.; Kirk, W.P. A comparative study of Si doping in GaAs layers grown by molecular beam epitaxy on GaAs(110) and GaAs(001) surfaces. J. Appl. Phys. 1997, 81, 7372–7375. [Google Scholar] [CrossRef]
- Pavesi, L.; Henini, M.; Johnston, D. Influence of the As overpressure during the molecular beam epitaxy growth of Si doped (211)A and (311)A GaAs. Appl. Phys. Lett. 1995, 66, 2846–2848. [Google Scholar] [CrossRef]
- Agawa, K.; Hirakawa, K.; Sakamoto, N.; Hashimoto, Y.; Ikoma, T. Electrical properties of heavily Sidoped (311)A GaAs grown by molecular beam epitaxy. Appl. Phys. Lett. 1994, 65, 1171–1173. [Google Scholar] [CrossRef]
- Okano, Y.; Shigeta, M.; Seto, H.; Katahama, H.; Nishine, S.; Fujimoto, I. Incorporation Behavior of Si Atoms in the Molecular Beam Epitaxial Growth of GaAs on Misoriented (111)A Substrates. Jpn. J. Appl. Phys. 1990, 29, L1357–L1359. [Google Scholar] [CrossRef]
- Ballingall, J.M.; Wood, C.E.C. Crystal orientation dependence of silicon autocompensation in molecular beam epitaxial gallium arsenide. Appl. Phys. Lett. 1982, 41, 947–949. [Google Scholar] [CrossRef]
- Galiev, G.B.; Klimov, E.A.; Zaitsev, A.A.; Pushkarev, S.S.; Klochkov, A.N. Study of the Surface Morphology, Electrophysical Characteristics, and Photoluminescence Spectra of GaAs Epitaxial Films on GaAs(110) Substrates. Opt. Spectrosc. 2020, 128, 877–884. [Google Scholar] [CrossRef]
- Vilisova, M.D.; Kunitsyn, A.E.; Lavrent’eva, L.G.; Preobrazhenskii, V.V.; Putyato, M.A.; Semyagin, B.R.; Toropov, S.E.; Chaldyshev, V.V. Doping of GaAs layers with Si under conditions of low-temperature molecular beam epitaxy. Semiconductors 2002, 36, 953–957. [Google Scholar] [CrossRef]
- Piazza, F.; Pavesi, L.; Henini, M.; Johnston, D. Effect of As overpressure on Si-doped (111)A GaAs grown by molecular beam epitaxy: A photoluminescence study. Semicond. Sci. Technol. 1992, 7, 1504–1507. [Google Scholar] [CrossRef]
- Pavesi, L.; Ky, N.H.; Ganiere, J.D.; Reinhart, F.K.; Baba-Ali, N.; Harrison, I.; Tuck, B.; Henini, M. Role of point defects in the silicon diffusion in GaAs and Al0.3Ga0.7As and in the related superlattice disordering. J. Appl. Phys. 1992, 71, 2225–2237. [Google Scholar] [CrossRef]
Sample # | Tg, °C | γ | Carriers | μ, cm2/(V·s) | n, cm–3 | Rq, nm | ||
---|---|---|---|---|---|---|---|---|
300 K | 77 K | 300 K | 77 K | |||||
72 | 410 | 55 | – | – | – | – | – | 5.2 |
71 | 460 | 53 | electrons | 230 | – | 4.5 × 1016 | – | 5.8 |
91 | 480 | 14 | electrons | 300 | 100 | 2.8 × 1017 | 3.0 × 1017 | 13.9 |
88 | 24 | electrons | 620 | 490 | 3.7 × 1017 | 3.8 × 1017 | 8.0 | |
84 | 42 | electrons | 1140 | 895 | 4.3 × 1017 | 4.5 × 1017 | 3.6 | |
90 | 84 | – | – | – | – | – | 7.8 | |
70 | 510 | 46 | electrons | 230 | 100 | 1.3 × 1017 | 1.4 × 1017 | 8.5 |
83 | 550 | 42 | electrons | 430 | 360 | 3.5 × 1017 | 3.6 × 1017 | 15.3 |
87 | 580 | 16 | holes | 51 | 77 | 4.3 × 1017 | 1.1 × 1017 | 117 |
75 | 25 | – | – | – | – | – | 12.3 | |
73 | 58 | electrons | 1040 | 850 | 2.5 × 1017 | 2.5 × 1017 | 15.5 | |
76 | 80 | – | – | – | – | – | 21.9 | |
74 | 620 | 58 | electrons | 2390 | 2130 | 5.6 × 1017 | 5.6 × 1017 | 11.1 |
80 | 680 | 44 | electrons | 690 | 560 | 3.9 × 1017 | 3.9 × 1017 | 51.3 |
Sample | Tg, °C | γ | Rq, nm | (004) XRD Reflection | μ, cm2/(V·s) | n, ×1017 cm–3 | Number of Additional Reflections | Diffuse Scattering | |
---|---|---|---|---|---|---|---|---|---|
Intensity, counts/s | FWHM, ° | ||||||||
# 80 | 680 | 44 | 51 | 1 154 | 0.556 | 690 | 3.9 | 4 | low |
# 83 | 550 | 42 | 15 | 8 464 | 0.478 | 430 | 3.5 | 8 | high |
# 84 | 480 | 42 | 3.6 | 159 260 | 0.563 | 1140 | 4.3 | 6 | medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimov, E.; Klochkov, A.; Pushkarev, S.; Galiev, G.; Galiev, R.; Yuzeeva, N.; Zaitsev, A.; Volkovsky, Y.; Seregin, A.; Prosekov, P. GaAs Molecular Beam Epitaxy on (110)-Oriented Substrates. Crystals 2023, 13, 28. https://doi.org/10.3390/cryst13010028
Klimov E, Klochkov A, Pushkarev S, Galiev G, Galiev R, Yuzeeva N, Zaitsev A, Volkovsky Y, Seregin A, Prosekov P. GaAs Molecular Beam Epitaxy on (110)-Oriented Substrates. Crystals. 2023; 13(1):28. https://doi.org/10.3390/cryst13010028
Chicago/Turabian StyleKlimov, Evgeniy, Aleksey Klochkov, Sergey Pushkarev, Galib Galiev, Rinat Galiev, Nataliya Yuzeeva, Aleksey Zaitsev, Yury Volkovsky, Alexey Seregin, and Pavel Prosekov. 2023. "GaAs Molecular Beam Epitaxy on (110)-Oriented Substrates" Crystals 13, no. 1: 28. https://doi.org/10.3390/cryst13010028
APA StyleKlimov, E., Klochkov, A., Pushkarev, S., Galiev, G., Galiev, R., Yuzeeva, N., Zaitsev, A., Volkovsky, Y., Seregin, A., & Prosekov, P. (2023). GaAs Molecular Beam Epitaxy on (110)-Oriented Substrates. Crystals, 13(1), 28. https://doi.org/10.3390/cryst13010028