Development of Hydrogen-Bonded Dimer-Type Photoluminescent Liquid Crystals of Fluorinated Tolanecarboxylic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Typical Synthetic Procedure of 2,3,5,6-Tetrafluoro-2-[4-(methoxyphenyl)ethyn-1-yl]benzoic acid (1a)
2.2.1. 2,3,5,6-Tetrafluoro-4-{2-(4-methoxyphenyl)ethyn-1-yl}benzoic acid (1a)
2.2.2. 2-{(4-Ethoxyphenyl)ethyn-1-yl}-2,3,5,6-tetrafluorobenzoic acid (1b)
2.2.3. 2,3,5,6-Tetrafluoro-4-{2-(4-propyloxy)ethyn-1-yl}benzoic acid (1c)
2.2.4. 2-{(4-Butoxyphenyl)ethyn-1-yl}-2,3,5,6-tetrafluorobenzoic acid (1d)
2.2.5. 2,3,5,6-Tetrafluoro-4-{2-(4-pentyloxy)ethyn-1-yl}benzoic acid (1e)
2.2.6. 2,3,5,6-Tetrafluoro-4-{2-(4-hexyloxy)ethyn-1-yl}benzoic acid (1f)
2.2.7. 2,3,5,6-Tetrafluoro-4-{2-(4-heptyloxy)ethyn-1-yl}benzoic acid (1g)
2.2.8. 2,3,5,6-Tetrafluoro-4-{2-(4-octyloxy)ethyn-1-yl}benzoic acid (1h)
2.3. Single-Crystal X-ray Diffraction
2.4. Phase Transition Behavior
2.5. Photophysical Properties
2.6. Theoretical Calculations
3. Results and Discussion
3.1. Synthesis and Crystal Structure
3.2. Phase Transition Behavior
3.3. Photophysical Behavior in Solution Phase
3.4. Photophysical Behavior in Aggregated Phases
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irfan, M.; Sumra, I.; Zhang, M.; Song, Z.; Liu, T.; Zeng, Z. Thermochromic and highly tunable color emitting bis-tolane based liquid crystal materials for temperature sensing devices. Dye. Pigment. 2021, 190, 109272. [Google Scholar] [CrossRef]
- Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional liquid crystals towards the next generation of materials. Angew. Chem. Int. Ed. 2018, 57, 4355–4371. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, J.; Chen, J.; Zhu, W.; Baranoff, E. Recent progress in luminescent liquid crystal materials: Design, properties and application for linearly polarized emission. J. Mater. Chem. C 2015, 3, 7993–8005. [Google Scholar] [CrossRef]
- Sagara, Y.; Kato, T. Stimuli-responsive luminescent liquid crystals: Change of photoluminescent colors triggered by a shear-induced phase transition. Angew. Chem. Int. Ed. 2008, 120, 5253–5256. [Google Scholar] [CrossRef]
- Zhao, D.; Fan, F.; Cheng, J.; Zhang, Y.; Wong, K.S.; Chigrinov, V.G.; Kwok, H.S.; Guo, L.; Tang, B.Z. Light-emitting liquid crystal displays based on an aggregation-induced emission luminogen. Adv. Opt. Mater. 2015, 3, 199–202. [Google Scholar] [CrossRef]
- Yamada, S.; Miyano, K.; Konno, T.; Agou, T.; Kubota, T.; Hosokai, T. Fluorine-containing bistolanes as light-emitting liquid crystalline molecules. Org. Biomol. Chem. 2017, 15, 5949–5958. [Google Scholar] [CrossRef]
- Morita, M.; Yamada, S.; Agou, T.; Kubota, T.; Konno, T. Luminescence tuning of fluorinated bistolanes via electronic or aggregated-structure control. Appl. Sci. 2019, 9, 1905. [Google Scholar] [CrossRef] [Green Version]
- Morita, M.; Yamada, S.; Konno, T. Fluorine-induced emission enhancement of tolanes via formation of tight molecular aggregates. New J. Chem. 2020, 44, 6704–6708. [Google Scholar] [CrossRef]
- Morita, M.; Yamada, S.; Konno, T. Systematic studies on the effect of fluorine atoms in fluorinated tolanes on their photophysical properties. Molecules 2021, 26, 2274. [Google Scholar] [CrossRef]
- Yamada, S.; Kobayashi, K.; Morita, M.; Konno, T. D–π–A-type fluorinated tolanes with a diphenylamio group: Crystal polymorphism formation and photophysical behavior. CrystEngComm 2022, 24, 936–941. [Google Scholar] [CrossRef]
- Morita, M.; Yamada, S.; Konno, T. Halogen atom effect of fluorinated tolanes on their luminescence characteristics. New J. Chem. 2022, 46, 4562–4569. [Google Scholar] [CrossRef]
- Yamada, S.; Kataoka, M.; Yoshida, K.; Nagata, M.; Agou, T.; Fukumoto, H.; Konno, T. Photophysical and thermophysical behavior of D-p-A-type fluorinated diphenylacetylenes bearing an alkoxy and an ethoxycarbonyl group at both longitudinal molecular terminals. J. Fluor. Chem. 2022, 261–262, 110032. [Google Scholar] [CrossRef]
- Yamada, S.; Uto, E.; Sakurai, T.; Konno, T. Development of thermoresponsive near-ultraviolet photoluminescent liquid crystals using hexyloxy-terminated fluorinated tolane dimers connected with an alkylene spacer. J. Mol. Liq. 2022, 362, 119755. [Google Scholar] [CrossRef]
- Yamada, S.; Uto, E.; Yoshida, K.; Sakurai, T.; Konno, T. Development of photoluminescent liquid-crystalline dimers bearing two fluorinated tolane-based luminous mesogens. J. Mol. Liq. 2022, 363, 119884. [Google Scholar] [CrossRef]
- Arakawa, Y.; Sasaki, Y.; Igawa, K.; Tsuji, H. Hydrogen bonding liquid crystalline benzoic acids with alkylthio groups: Phase transition behavior and insights into the cybotactic nematic phase. New J. Chem. 2017, 41, 6514–6522. [Google Scholar] [CrossRef]
- Arakawa, Y.; Kang, S.; Watanabe, J.; Konishi, G. Assembly of thioether-containing rod-like liquid crystalline materials assisted by hydrogen-bonding terminal carboxyl groups. RSC Adv. 2015, 5, 8056–8062. [Google Scholar] [CrossRef]
- Wen, J.; Tian, M.; Yu, H.; Guo, Z.; Chen, Q. Novel fluorinated liquid crystals. Part 9.—Synthesis and mesomorphic properties of 4-(n-alkoxycarbonyl)phenyl 4-[(4-n-alkoxy-2,3,5,6-tetrafluorophenyl)ethynyl]benzoates. J. Mater. Chem. 1994, 4, 327–330. [Google Scholar] [CrossRef]
- Wen, J.X.; Tian, M.Q.; Chen, Q. Synthesis and mesomorphic properties of 4′-n-alkoxy-2,3,5,6-tetrafluorobiphenyl-4-carboxylic acids. J. Fluor. Chem. 1994, 67, 207–210. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement, and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Hohenstein, E.G.; Chill, S.T.; Sherrill, C.D. Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules. J. Chem. Theory Comput. 2008, 4, 1996–2000. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jensen, J.H. Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: New energy gradients and molecular surface tesselation. J. Comput. Chem. 2004, 25, 1449–1462. [Google Scholar] [CrossRef] [PubMed]
- Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Zgierski, M.Z.; Lim, E.C. Nature of the ‘dark’ state in diphenylacetylene and related molecules: State switch from the linear ππ* state to the bent πσ* state. Chem. Phys. Lett. 2004, 387, 352–355. [Google Scholar] [CrossRef]
- Saltiel, J.; Kumar, V.K.R. Photophysics of diphenylacetylene: Light from the “dark state”. J. Phys. Chem. A 2012, 116, 10548–10558. [Google Scholar] [CrossRef]
- Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Mataga, N.; Kaifu, Y.; Koizumi, M. The solvent effect on fluorescence spectrum, change of solute-solvent interaction during the lifetime of excited solute molecule. Bull. Chem. Soc. Jpn. 1955, 28, 690–691. [Google Scholar] [CrossRef] [Green Version]
- Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent effects upon fluorescence spectra and dipole moments of excited molecules. Bull. Chem. Soc. Jpn. 1956, 29, 465–470. [Google Scholar] [CrossRef]
Molecule | Phase Sequence and Phase Transition Temperature [°C] 1 | |
---|---|---|
Heating Process | Cooling Process | |
1a | Cry 224 Iso | Iso 165 G |
1b | Cry 207 Iso | Iso 140 G |
1c | Cry 211 Iso | Iso 158 G |
1d | Cry 176 N 198 Iso | Iso 124 G |
1e | Cry 1 160 Cry 2 170 N 191 Iso | Iso 132 G |
1f | Cry 181 N 190 Iso | Iso 141 G |
1g | Cry 169 N 184 Iso | Iso 150 G |
1h | Cry 161 N 186 Iso | Iso 146 N 118 G |
Molecule | Solvent (ET30) | λabs [nm] 1 (ε, 103 [L mol−1 cm−1]) | λPL [nm] 1 (ΦPL) 2 | CIE Coordinate (x, y) |
---|---|---|---|---|
1a | CH2Cl2 (40.7) | 259 (8.69), 317 (12.9) | 435 (0.33) | (0.150, 0.085) |
Toluene (33.9) | 324 (27.3) | 403 (0.35) | (0.160, 0.029) | |
CHCl3 (39.1) | 274 (36.0), 284 (36.2) 317 (27.7) | 420 (0.33) | (0.155, 0.051) | |
MeCN (45.6) | 256 (14.2), 299sh (26.3), 314 (30.2) | 463 (0.10) | (0.194, 0.238) | |
1b | CH2Cl2 (40.7) | 256 (19.8), 323 (21.6) | 439 (0.33) | (0.152, 0.088) |
1c | CH2Cl2 (40.7) | 258 (12.0), 327 (18.5) | 441 (0.35) | (0.158, 0.103) |
1d | CH2Cl2 (40.7) | 258 (8.98), 323 (18.9) | 439 (0.37) | (0.161, 0.108) |
1e | CH2Cl2 (40.7) | 257 (12.6), 319 (24.0) | 440 (0.27) | (0.160, 0.107) |
1f | CH2Cl2 (40.7) | 259 (14.2), 320 (20.3) | 437 (0.33) | (0.160, 0.101) |
1g | CH2Cl2 (40.7) | 255 (12.8), 329 (16.9) | 440 (0.38) | (0.167, 0.125) |
1h | CH2Cl2 (40.7) | 256 (12.9), 327 (16.2) | 438 (0.37) | (0.163, 0.105) |
Molecule | Phase 1 | λPL [nm] (ΦPL) 2 | CIE Coordinate (x, y) |
---|---|---|---|
1a | Crystalline (Cry) | 481 (0.99) | (0.185, 0.296) |
1b | Cry | 440 (0.69) | (0.166, 0.127) |
1c | Cry | 434 (0.71) | (0.162, 0.099) |
1d | Cry | 428sh, 446(0.63) | (0.167, 0.153) |
1e | Cry | 454sh, 478 (0.57) | (0.184, 0.288) |
1f | Cry | 430sh, 458, 480sh (0.60) | (0.178, 0.239) |
1g | Cry | 465sh, 482, 511sh (0.49) | (0.198, 0.351) |
1h | Cry | 455, 483, 511sh (0.70) | (0.200, 0.320) |
1h | – 3 | 428sh, 454, 479 (0.12) | (0.189, 0.240) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, S.; Kataoka, M.; Yoshida, K.; Nagata, M.; Agou, T.; Fukumoto, H.; Konno, T. Development of Hydrogen-Bonded Dimer-Type Photoluminescent Liquid Crystals of Fluorinated Tolanecarboxylic Acid. Crystals 2023, 13, 25. https://doi.org/10.3390/cryst13010025
Yamada S, Kataoka M, Yoshida K, Nagata M, Agou T, Fukumoto H, Konno T. Development of Hydrogen-Bonded Dimer-Type Photoluminescent Liquid Crystals of Fluorinated Tolanecarboxylic Acid. Crystals. 2023; 13(1):25. https://doi.org/10.3390/cryst13010025
Chicago/Turabian StyleYamada, Shigeyuki, Mitsuki Kataoka, Keigo Yoshida, Masakazu Nagata, Tomohiro Agou, Hiroki Fukumoto, and Tsutomu Konno. 2023. "Development of Hydrogen-Bonded Dimer-Type Photoluminescent Liquid Crystals of Fluorinated Tolanecarboxylic Acid" Crystals 13, no. 1: 25. https://doi.org/10.3390/cryst13010025
APA StyleYamada, S., Kataoka, M., Yoshida, K., Nagata, M., Agou, T., Fukumoto, H., & Konno, T. (2023). Development of Hydrogen-Bonded Dimer-Type Photoluminescent Liquid Crystals of Fluorinated Tolanecarboxylic Acid. Crystals, 13(1), 25. https://doi.org/10.3390/cryst13010025