Excited Non-Local Microelongated Semiconductor Layer Thermal-Optical Mechanical Waves Affected by Rotational Field
Abstract
:1. Introduction
2. Mathematical Model and Main Equations
3. Solutions to the Problem
4. Boundary Conditions
5. Discussion and Numerical Results
5.1. Impact of Thermal and Elastic Memories
5.2. Impact of the Laser Pulse Rise-Time Parameter
5.3. Impact of Rotation Parameter
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Lame’s elastic semiconductor parameters. | |
The deformation potential difference. | |
Unit vector in the direction of y-axis. | |
Reference temperature in its natural state. | |
The volume thermal expansion. | |
The microelongational stress tensor. | |
The density of the microelongated sample. | |
Coefficients of linear thermal expansion. | |
Cubical dilatation. | |
Specific heat of the microelongated material. | |
The thermal conductivity. | |
The carrier diffusion coefficient. | |
The carrier lifetime. | |
The energy gap. | |
Components of strain tensor. | |
Two scalar functions. | |
The microinertia of microelement. | |
Microelongational material parameters. | |
Thermal relaxation times. | |
The scalar microelongational function. | |
Components of the microstretch vector | |
Stress tensor component | |
Kronecker delta | |
Angular velocity |
References
- Chteoui, R.; Lotfy, K.; El-Bary, A.A.; Allan, M.M. Hall Current Effect of Magnetic-Optical-Elastic-Thermal-Diffusive Non-Local Semiconductor Model during Electrons-Holes Excitation Processes. Crystals 2022, 12, 1680. [Google Scholar] [CrossRef]
- Saeed, A.M.; Lotfy, K.; Ahmed, M.H. Thermal-Optical Mechanical Waves of the Excited Microelongated Semiconductor Layer in a Rotational Field. Mathematics 2022, 10, 4660. [Google Scholar] [CrossRef]
- Eringen, A.C. Microcontinuum field theories. In Foundations and Solids; Springer: New York, NY, USA, 1999; Volume 1. [Google Scholar]
- Eringen, A.C. Linear theory of micropolar elasticity. J. Math. Mech. 1966, 15, 909–923. [Google Scholar]
- Eringen, A.C. Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 1990, 28, 1291–1301. [Google Scholar] [CrossRef]
- Singh, B. Reflection and refraction of plane waves at a liquid/thermo-microstretch elastic solid interface. Int. J. Eng. Sci. 2001, 39, 583–598. [Google Scholar] [CrossRef]
- Othman, M.I.A.; Lotfy, K. The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation. J. Comput. Theor. Nanosci. 2015, 12, 2587–2600. [Google Scholar] [CrossRef]
- De Cicco, S.; Nappa, L. On the theory of thermomicrostretch elastic solids. J. Therm. Stress. 1999, 22, 565–580. [Google Scholar]
- Othman, M.I.; Lotfy, K. On the plane waves of generalized thermo-microstretch elastic half-space under three theories. Int. Comm. Heat Mass Trans. 2010, 37, 192–200. [Google Scholar] [CrossRef]
- Lotfy, K.; Abo-Dahab, S.M. Two-dimensional problem of two temperature generalized thermoelasticity with normal mode analysis under thermal shock problem. J. Comput. Theor. Nanosci. 2015, 12, 1709–1719. [Google Scholar] [CrossRef]
- Othman, M.; Lotfy, K. Effect of rotating on plane waves in generalized thermo-microstretch elastic solid with one relaxation time. Multidiscip. Model. Mat. Str. 2011, 7, 43–62. [Google Scholar] [CrossRef]
- Ramesh, G.K.; Prasannakumara, B.; Gireesha, B.J.; Rashidi, M.M. Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. J. Appl. Fluid Mech. 2016, 9, 1115–1122. [Google Scholar] [CrossRef]
- Ezzat, M.; Abd-Elaal, M.Z. Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium. J. Frankl. Inst. 1997, 334, 685–706. [Google Scholar] [CrossRef]
- Shaw, S.; Mukhopadhyay, B. Periodicaly Varying Heat Source Response A Funct. Graded Microelongated Medium. Appl. Math. Comput. 2012, 218, 6304–6313. [Google Scholar]
- Shaw, S.; Mukhopadhyay, B. Moving heat source response in a thermoelastic micro-elongated Solid. J. Eng. Phys. Thermophys. 2013, 86, 716–722. [Google Scholar] [CrossRef]
- Ailawalia, P.; Sachdeva, S.; Pathania, D. Plane strain deformation in a thermo-elastic microelongated solid with internal heat source. Int. J. Appl. Mech. Eng. 2015, 20, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Sachdeva, S.; Ailawalia, P. Plane strain deformation in thermoelastic micro-elongated solid. Civil Environ. Res. 2015, 7, 92–98. [Google Scholar]
- Ailawalia, P.; Kumar, S.; Pathania, D. Internal heat source in thermoelastic micro-elongated solid under Green Lindsay theory. J. Theor. Appl. Mech. 2016, 46, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Marin, M.; Vlase, S.; Paun, M. Considerations on double porosity structure for micropolar bodies. AIP Adv. 2015, 5, 037113. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J.P.; Leite, R.C.C.; Moore, R.S.; Porto, S.P.S.; Whinnery, J.R. Long-transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 1964, 119, 501–510. [Google Scholar] [CrossRef]
- Kreuzer, L.B. Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 1971, 42, 2934. [Google Scholar] [CrossRef]
- Tam, A.C. Ultrasensitive Laser Spectroscopy; Academic Press: New York, NY, USA, 1983; pp. 1–108. [Google Scholar]
- Tam, A.C. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 1986, 58, 381. [Google Scholar] [CrossRef]
- Tam, A.C. Photothermal Investigations in Solids and Fluids; Academic Press: Boston, MA, USA, 1989; pp. 1–33. [Google Scholar]
- Hobinya, A.; Abbas, I. A GN model on photothermal interactions in a two-dimensions semiconductor half space. Results Phys. 2019, 15, 102588. [Google Scholar] [CrossRef]
- Todorović, D.M.; Nikolić, P.M.; Bojičić, A.I. Photoacoustic frequency transmission technique: Electronic deformation mechanism in semiconductors. J. Appl. Phys. 1999, 85, 7716–7726. [Google Scholar] [CrossRef]
- Song, Y.; Todorovic, D.M.; Cretin, B.; Vairac, P. Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. Solids Struct. 2010, 47, 1871. [Google Scholar] [CrossRef]
- Lotfy, K. The elastic wave motions for a photothermal medium of a dual-phase-lag model with an internal heat source and gravitational field. Can. J. Phys. 2016, 94, 400–409. [Google Scholar] [CrossRef] [Green Version]
- Lotfy, K. A Novel Model of Photothermal Diffusion (PTD) fo Polymer Nano- composite Semiconducting of Thin Circular Plate. Phys. B Condenced Matter 2018, 537, 320–328. [Google Scholar] [CrossRef]
- Lotfy, K.; Kumar, R.; Hassan, W.; Gabr, M. Thermomagnetic effect with microtemperature in a semiconducting Photothermal excitation medium. Appl. Math. Mech. Engl. Ed. 2018, 39, 783–796. [Google Scholar] [CrossRef]
- Lotfy, K.; Gabr, M. Response of a semiconducting infinite medium under two temperature theory with photothermal excitation due to laser pulses. Opt. Laser Technol. 2017, 97, 198–208. [Google Scholar] [CrossRef]
- Lotfy, K. Photothermal waves for two temperature with a semiconducting medium under using a dual-phase-lag model and hydrostatic initial stress. Waves Random Complex Media 2017, 27, 482–501. [Google Scholar] [CrossRef]
- Lotfy, K. A novel model for Photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to mechanical ramp type with two-temperature theory and magnetic field. Sci. Rep. 2019, 9, 3319. [Google Scholar] [CrossRef]
- Lotfy, K. Effect of Variable Thermal Conductivity during the Photothermal Diffusion Process of Semiconductor Medium. Silicon 2019, 11, 1863–1873. [Google Scholar] [CrossRef]
- Abbas, I.; Alzahranib, F.; Elaiwb, A. A DPL model of photothermal interaction in a semiconductor material. Waves Random Complex Media 2019, 29, 328–343. [Google Scholar] [CrossRef]
- Khamis, A.; El-Bary, A.; Lotfy, K.; Bakali, A. Photothermal excitation processes with refined multi dual phase-lags theory for semiconductor elastic medium. Alex. Eng. J. 2020, 59, 1–9. [Google Scholar] [CrossRef]
- Mahdy, A.M.S.; Lotfy, K.; El-Bary, A.A.; Alshehri, H.M. Thermal-microstretch elastic semiconductor medium with rotation field during photothermal transport processes. Mech. Based Des. Struct. Mach. 2021. [Google Scholar] [CrossRef]
- Lotfy, K.; El-Bary, A.A. Magneto-photo-thermo-microstretch semiconductor elastic medium due to photothermal transport process. Silicon 2021, 14, 4809–4821. [Google Scholar] [CrossRef]
- Eringen, A.; Edelen, D. On nonlocal elastic. Int. J. Eng. Sci. 1972, 10, 233–248. [Google Scholar] [CrossRef]
- Eringen, A. Nonlocal polar elastic continua. Int. J. Eng. Sci. 1972, 10, 1–16. [Google Scholar] [CrossRef]
- Eringen, A. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Kumar, R.; Ghangas, S.; Vashishth, A. Fundamental and plane wave solution in non-local biothermoelasticity diffusion theory. Coupled Syst. Mech. 2021, 10, 521–538. [Google Scholar]
- Biot, M. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 1956, 27, 240–253. [Google Scholar] [CrossRef]
- Lord, H.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solid. 1967, 15, 299–309. [Google Scholar] [CrossRef]
- Green, A.; Lindsay, K. Thermoelasticity. J. Elast. 1972, 2, 1–7. [Google Scholar] [CrossRef]
- Abouelregal, A.; Sedighi, H.; Eremeyev, V. Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model. Contin. Mech. Thermodyn. 2022. [Google Scholar] [CrossRef]
- Deresiewicz, H. Plane waves in a thermoelastic solid. J. Acoust. Soc. Am. 1957, 29, 204–209. [Google Scholar] [CrossRef]
- Chadwick, P.; Snedon, I. Plane waves in an elastic solid conducting heat. J. Mech. Phys. Solids 1958, 6, 223–230. [Google Scholar] [CrossRef]
- Chadwick, P. Thermoelasticity: The dynamic theory. In Progress in Solid Mechanics; Hill, R., Sneddon, I.N., Eds.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1960; Volume I, pp. 263–328. [Google Scholar]
- Lotfy, K.; Hassan, W.; Gabr, M.E. Thermomagnetic effect with two temperature theory for photothermal process under hydrostatic initial stress. Results Phys. 2017, 7, 3918–3927. [Google Scholar] [CrossRef]
- Mandelis, A.; Nestoros, M.; Christofides, C. Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Opt. Eng. 1997, 36, 459–468. [Google Scholar] [CrossRef]
- Lotfy, K.; Abo-Dahab, S.M.; Tantawi, R.; Anwer, N. Thermomechanical Response Model of a Reflection Photo thermal Diffusion Waves (RPTD) for Semiconductor Medium. Silicon 2020, 12, 199–209. [Google Scholar] [CrossRef]
- Lotfy, K.; Hassan, W.; El-Bary, A.A.; Kadry, M.A. Response of electromagnetic and Thomson effect of semiconductor mediu due to laser pulses and thermal memories during photothermal excitation. Results Phys. 2020, 16, 102877. [Google Scholar] [CrossRef]
- Liu, J.; Han, M.; Wang, R.; Xu, S.; Wang, X. Photothermal phenomenon: Extended ideas for thermophysical properties characterization. J. Appl. Phys. 2022, 131, 065107. [Google Scholar] [CrossRef]
Unit | Symbol | Value | Unit | Symbol | Value |
---|---|---|---|---|---|
, | , | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sapa, S.; Alhejaili, W.; Lotfy, K.; El-Bary, A.A. Excited Non-Local Microelongated Semiconductor Layer Thermal-Optical Mechanical Waves Affected by Rotational Field. Crystals 2023, 13, 116. https://doi.org/10.3390/cryst13010116
El-Sapa S, Alhejaili W, Lotfy K, El-Bary AA. Excited Non-Local Microelongated Semiconductor Layer Thermal-Optical Mechanical Waves Affected by Rotational Field. Crystals. 2023; 13(1):116. https://doi.org/10.3390/cryst13010116
Chicago/Turabian StyleEl-Sapa, Shreen, Weaam Alhejaili, Khaled Lotfy, and Alaa A. El-Bary. 2023. "Excited Non-Local Microelongated Semiconductor Layer Thermal-Optical Mechanical Waves Affected by Rotational Field" Crystals 13, no. 1: 116. https://doi.org/10.3390/cryst13010116
APA StyleEl-Sapa, S., Alhejaili, W., Lotfy, K., & El-Bary, A. A. (2023). Excited Non-Local Microelongated Semiconductor Layer Thermal-Optical Mechanical Waves Affected by Rotational Field. Crystals, 13(1), 116. https://doi.org/10.3390/cryst13010116