The Effect of Different Copper Discs on the Discharge of Superconducting Coils
Abstract
:1. Introduction
2. Experiment
2.1. Experiment Setup
2.2. Experiment Results
3. Simulation Model
3.1. FEM Model
3.2. Study Case
3.3. Material Parameters
4. Results and Discussion
4.1. The Current and Energy in the HTS Coil
4.2. Current of Copper Discs
4.3. Temperature of Copper Discs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Obradors, X.; Puig, T. Coated conductors for power applications: Materials challenges. Supercond. Sci. Technol. 2014, 27, 044003. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, J.-M.; Jiang, G.-Y.; Chen, C.-S.; Wu, W.; Zhang, Z.-W.; Chen, S.K.; Hong, Y.M.; Hong, Z.-Y.; Jin, Z.-J.; et al. Progress in fabrication of second generation high temperature superconducting tape at Shanghai Superconductor Technology. Supercond. Sci. Technol. 2019, 32, 044004. [Google Scholar] [CrossRef]
- Hahn, S.; Kim, K.; Kim, K.; Hu, X.; Painter, T.; Dixon, I.; Kim, S.; Bhattarai, K.R.; Noguchi, S.; Jaroszynski, J.; et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature 2019, 570, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Kim, J.; Cheon, K.; Lee, H.; Hahn, S.; Moon, S.H. 26 T 35 mm all-GdBa2Cu3O7-x multi-width no-insulation superconducting magnet. Supercond. Sci. Technol. 2016, 29, 04T04. [Google Scholar] [CrossRef]
- Gao, P.; Guan, M.; Wang, X.; Zhou, Y. Electromagnetic-thermal-structure multi-layer nonlinear elastoplastic modelling study on epoxy-impregnated REBCO pancake coils in high-field magnets. Superconductivity 2022, 1, 100002. [Google Scholar] [CrossRef]
- Wang, Y.; Chan, W.K.; Schwartz, J. Self-protection mechanisms in no-insulation (RE)Ba2Cu3Ox high temperature superconductor pancake coils. Supercond. Sci. Technol. 2016, 29, 045007. [Google Scholar] [CrossRef]
- Bascunan, J.; Hahn, S.; Lecrevisse, T.; Song, J.; Miyagi, D.; Iwasa, Y. An 800-MHz all-REBCO Insert for the 1.3-GHz LTS/HTS NMR Magnet Program—A Progress Report. IEEE Trans. Appl. Supercond. 2016, 26, 4300205. [Google Scholar] [CrossRef]
- Bellis, R.; Iwasa, Y. Quench propagation in high Tc superconductors. Cryogenics 1994, 34, 129–144. [Google Scholar] [CrossRef]
- Lecrevisse, T.; Chaud, X.; Debray, F.; Devaux, M.; Fazilleau, P.; Juster, F.P.; Miyoshi, Y.; Rey, J.-M.; Tixador, P.; Vincent, B. Quench Propagation in YBCO Pancake: Experimental and Computational Results. IEEE Trans. Appl. Supercond. 2013, 23, 4601805. [Google Scholar] [CrossRef]
- Chigusa, S.; Maeda, H.; Taniguchi, Y.; Hayakawa, N.; Okubo, H. Insulation performance of pressurized liquid helium under quench-induced thermal bubble disturbance for superconducting power apparatus. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 385–392. [Google Scholar] [CrossRef]
- Nanato, N.; Tsumiyama, Y.; Kim, S.; Murase, S.; Seong, K.-C.; Kim, H.-J. Development of quench protection system for HTS coils by active power method. Phys. C Supercond. Its Appl. 2007, 463–465, 1281–1284. [Google Scholar] [CrossRef]
- Rummel, T.; Gaupp, O.; Lochner, G.; Sapper, J. Quench protection for the superconducting magnet system of WENDELSTEIN 7-X. IEEE Trans. Appl. Supercond. 2002, 12, 1382–1385. [Google Scholar] [CrossRef]
- Weijers, H.W.; Hannahs, S.T.; Murphy, T.P.; Markiewicz, W.D.; Gavrilin, A.V.; Voran, A.J.; Viouchkov, Y.L.; Gundlach, S.R.; Noyes, P.D.; Abraimov, D.V.; et al. Progress in the Development and Construction of a 32-T Superconducting Magnet. IEEE Trans. Appl. Supercond. 2016, 26, 1–7. [Google Scholar] [CrossRef]
- Bermudez, S.I.; Ambrosio, G.; Bajas, H.; Bourcey, N.; Chlachidze, G.; Troitino, J.F.; Ferracin, P.; Perez, J.C.; Pincot, F.-O.; Ravaioli, E.; et al. Overview of the Quench Heater Performance for MQXF, the Nb3Sn Low-β Quadrupole for the High Luminosity LHC. IEEE Trans. Appl. Supercond. 2018, 28, 4008406. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S.; Dai, Y.; Lei, Y.; Song, S.; Ni, Z.; Hu, X.; Yan, L. A Passive Quench Protection Design for the 9.4 T MRI Superconducting Magnet. IEEE Trans. Appl. Supercond. 2013, 24, 4401605. [Google Scholar] [CrossRef]
- Song, H. Sudden-Discharge Cycling Characteristics and Millisecond Dynamic Behaviors of a HTS Stainless-Steel Insulated Double-Pancake Coil with Thin Copper Plates. IEEE Trans. Appl. Supercond. 2020, 30, 4702506. [Google Scholar] [CrossRef]
- Ravaioli, E.; Datskov, V.I.; Giloux, C.; Kirby, G.; Kate, H.H.T.; Verweij, A.P. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets. IEEE Trans. Appl. Supercond. 2013, 24, 0500905. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Song, Z.; Fu, P.; Tong, W.; Li, H.; Zhang, X. Structure Optimization of Fast Discharge Resistor System for Quench Protection System. IEEE Access 2019, 7, 52122–52131. [Google Scholar] [CrossRef]
- Green, M.A. Various Quench Protection Methods for HTS Magnets. IOP Conf. Ser. Mater. Sci. Eng. 2020, 755, 012134. [Google Scholar] [CrossRef]
- Fazilleau, P.; Borgnolutti, F.; Lecrevisse, T. Protection Design for a 10-T HTS Insert Magnet. IEEE Trans. Appl. Supercond. 2016, 26, 4700705. [Google Scholar] [CrossRef]
- Witte, H.; Sampson, W.B.; Weggel, R.; Palmer, R.; Gupta, R. Reduction of the Hot Spot Temperature in HTS Coils. IEEE Trans. Appl. Supercond. 2013, 24, 4601904. [Google Scholar] [CrossRef] [Green Version]
- Duthil, P. Material properties at low temperature. arXiv 2015, arXiv:1501.07100. [Google Scholar]
Parameters | Test Coil |
---|---|
Tape width | 4 mm |
Tape thickness | 0.25 mm |
Average thickness of each turn | 444 μm |
Number of turns, DP | 27 × 2 |
Inner/outer diameter | 80/104 mm |
Insulation | Kapton |
Field per Ampere | 0.7 mT/A |
Self-inductance | 0.4 mH |
Critical current of the coil | 96 A @ 77 K |
Parameters | Industry-Scale Coil |
---|---|
Tape width | 10 mm |
Tape thickness | 95 μm |
Number of turns, DP | 200 × 2 |
Inner/outer diameter | 80/128 mm |
Kapton | 25 μm |
Field per Ampere | 7.4 mT/A |
Self-inductance | 18.3 mH |
Parameters | Values |
---|---|
Self-Inductance of copper disc | 1.48 × 10−7 H |
Mutual-Inductance between two copper discs, Mcc | 6.10 × 10−8 H |
Mutual-Inductance between HTS coil and copper discs Mc1 = Mc2 | 3.86 × 10−5 H |
Materials | Ratios | |
---|---|---|
Without copper disc | 1121.5 | 100% |
RRR = 300 | 387.5 | 34.5% |
RRR = 100 | 436.5 | 38.9% |
RRR = 80 | 449.3 | 40.1% |
RRR = 60 | 472.7 | 42.1% |
RRR = 40 | 510.4 | 45.5% |
RRR = 30 | 541.6 | 48.3% |
RRR = 20 | 599.9 | 53.5% |
RRR = 10 | 721.1 | 64.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Song, Y.; Liu, H.; Lu, Z.; Zheng, J.; Liu, F.; Song, M. The Effect of Different Copper Discs on the Discharge of Superconducting Coils. Crystals 2022, 12, 1118. https://doi.org/10.3390/cryst12081118
Xia Y, Song Y, Liu H, Lu Z, Zheng J, Liu F, Song M. The Effect of Different Copper Discs on the Discharge of Superconducting Coils. Crystals. 2022; 12(8):1118. https://doi.org/10.3390/cryst12081118
Chicago/Turabian StyleXia, Yajun, Yuntao Song, Huajun Liu, Zhen Lu, Jinxing Zheng, Fang Liu, and Meng Song. 2022. "The Effect of Different Copper Discs on the Discharge of Superconducting Coils" Crystals 12, no. 8: 1118. https://doi.org/10.3390/cryst12081118
APA StyleXia, Y., Song, Y., Liu, H., Lu, Z., Zheng, J., Liu, F., & Song, M. (2022). The Effect of Different Copper Discs on the Discharge of Superconducting Coils. Crystals, 12(8), 1118. https://doi.org/10.3390/cryst12081118