Microstructure and Mechanical Properties of Laser Welded Magnesium Alloy/Steel Joint Using Cu-Si Composite Interlayer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Analysis of Surface Morphology and Microstructure
3.2. Microstructure Distribution at Magnesium Alloy-Steel Interface
3.3. Mechanical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Zhou, L.; Jiang, X.; Hu, S. Influence of forming parameters on temperature and surface quality for AZ31B magnesium alloy sheet during incremental forming. Forg. Stamp. Technol. 2020, 45, 47–54. [Google Scholar]
- Li, G.; Liu, X. Literature review on research and development of automotive lightweight technology. Mater. Sci. Technol. 2020, 28, 47–61. [Google Scholar]
- Kaluza, A.; Kleemann, S.; Frohlich, T.; Herrmann, C.; Vietor, T. Concurrent design & life cycle engineering in automotive lightweight component development. In Proceedings of the 1st CIRP Conference on Composite Materials Parts Manufacturing (CIRP CCMPM), Karlsruhe Institute of Technology, Karlsruhe, Germany, 8–9 June 2017; pp. 16–21. [Google Scholar]
- Friedrich, H.; Schumann, S. Research for a “new age of magnesium” in the automotive industry. J. Mater. Process. Technol. 2001, 117, 276–281. [Google Scholar] [CrossRef]
- Wahba, M.; Katayama, S. Laser welding of AZ31B magnesium alloy to Zn-coated steel. Mater. Des. 2012, 35, 701–706. [Google Scholar] [CrossRef]
- Subravel, V.; Alagappan, N.; Babu, N. Influence of arc oscillation frequency on tensile properties and microstructural characteristics of magnetic arc oscillation welded AZ31B magnesium alloy joints. Mater. Today-Proc. 2020, 22, 606–613. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, S.; Chen, Y.; Xiong, Z.; Hu, D.; Cheng, D. Numerical simulation of laser welding of magnesium and steel dissimilar metal based on ABAQUS. Trans. Mater. Heat Treat. 2021, 42, 134–141. [Google Scholar]
- Yang, F.; Xia, G.J.; Guo, X.; Chen, C.Y.; Long, Y.; Chen, B.H.; Tang, J.L.; Chen, G.Y. Research progress of laser welding under subatmospheric pressure. Int. J. Adv. Manuf. Technol. 2021, 116, 803–820. [Google Scholar] [CrossRef]
- Cao, X.; Jahazi, M.; Immarigeon, J.P.; Wallace, W. A review of laser welding techniques for magnesium alloys. J. Mater. Process. Technol. 2006, 171, 188–204. [Google Scholar] [CrossRef]
- Nayeb-Hashemi, A.A.; Clark, J.B.; Swartzendruber, L.J. The Fe−Mg (Iron-Magnesium) system. Bull. Alloy Phase Diagr. 1985, 6, 235–238. [Google Scholar] [CrossRef]
- Song, G.; Li, T.T.; Yu, J.W.; Liu, L.M. A Review of Bonding Immiscible Mg/Steel Dissimilar Metals. Materials 2018, 11, 2515. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Li, T.T.; Chi, J.Y.; Liu, L.M. Bonding of immiscible Mg/steel by butt fusion welding. Scr. Mater. 2018, 157, 10–14. [Google Scholar] [CrossRef]
- Song, G.; Li, T.T.; Zhang, Z.D.; Liu, L.M. Investigation of unequal thickness Mg/steel butt-welded plate by hybrid laser-tungsten inert gas welding with a Ni interlayer. J. Manuf. Process. 2017, 30, 299–302. [Google Scholar] [CrossRef]
- Tan, C.W.; Xiao, L.Y.; Liu, F.Y.; Chen, B.; Song, X.G.; Li, L.Q.; Feng, J.C. Influence of Laser Power on the Microstructure and Mechanical Properties of a Laser Welded-Brazed Mg Alloy/Ni-Coated Steel Dissimilar Joint. J. Mater. Eng. Perform. 2017, 26, 2983–2997. [Google Scholar] [CrossRef]
- Liu, L.M.; Qi, X.D. Strengthening effect of nickel and copper interlayers on hybrid laser-TIG welded joints between magnesium alloy and mild steel. Mater. Des. 2010, 31, 3960–3963. [Google Scholar] [CrossRef]
- Liu, L.M.; Qi, X.D. Effects of copper addition on microstructure and strength of the hybrid laser-TIG welded joints between magnesium alloy and mild steel. J. Mater. Sci. 2009, 44, 5725–5731. [Google Scholar] [CrossRef]
- Liu, L.; Qi, X.; Zhang, Z. The Effect of Alloying Elements on the Shear Strength of the Lap Joint of AZ31B Magnesium Alloy to Q235 Steel by Hybrid Laser-TIG Welding Technique. Metall. Mater. Trans. A 2012, 43, 1976–1988. [Google Scholar] [CrossRef]
- Ding, M.; Liu, S.S.; Zheng, Y.; Wang, Y.C.; Li, H.; Xing, W.Q.; Yu, X.Y.; Dong, P. TIG-MIG hybrid welding of ferritic stainless steels and magnesium alloys with Cu interlayer of different thickness. Mater. Des. 2015, 88, 375–383. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, A.; Xu, L.; Yang, F.; Zou, P.; Lei, M. Characteristics of Laser Deep Penetration Welding of Mg Alloy/Steel Controlled by Cu. Chin. J. Rare Met. 2021, 45, 804–811. [Google Scholar]
- Cao, R.; Chang, J.H.; Huang, Q.; Zhang, X.B.; Yan, Y.J.; Chen, J.H. Behaviors and effects of Zn coating on welding-brazing process of Al-Steel and Mg-steel dissimilar metals. J. Manuf. Process. 2018, 31, 674–688. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Zhang, Y.M.; Mi, G.Y.; Wang, C.M.; Zhang, W.; Zhang, X. Effects of Si contents in filling wires on microstructure evolution and properties of Al-steel dissimilar joint by laser welding-brazing. J. Mater. Res. Technol. 2021, 15, 1896–1904. [Google Scholar] [CrossRef]
- Xia, H.B.; Zhao, X.Y.; Tan, C.W.; Chen, B.; Song, X.G.; Li, L.Q. Effect of Si content on the interfacial reactions in laser welded-brazed Al/steel dissimilar butted joint. J. Mater. Process. Technol. 2018, 258, 9–21. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, J.; Lu, Y.; Zhou, L.; Pan, J. Microstructure and Mechanical Properties of Deep Penetration Laser Welding Joints in Steel/Aluminum with Si Powder Addition. J. Mech. Eng. 2018, 54, 58–65. [Google Scholar] [CrossRef]
- Rathod, M.J.; Kutsuna, M. Joining of aluminum Alloy 5052 and low-carbon steel by laser roll welding. Weld. J. 2004, 83, 16S–26S. [Google Scholar]
- Li, C.; Fan, D.; Yu, X.; Yu, S. Method of Arc-Assisted Laser Wire Welding-Brazing Between Aluminum and Galvanized Steel with Filler Powder. Chin. J. Lasers 2016, 43, 0702007. [Google Scholar]
- Stein, F.; Palm, M. Re-determination of transition temperatures in the Fe-Al system by differential thermal analysis. Int. J. Mater. Res. 2007, 98, 580–588. [Google Scholar] [CrossRef]
- Shi, Y.; Li, J.; Huang, J.; Gu, Y.; Fan, D. Effects of Si and Zn on interface microstructures of aluminum/steel welding-brazing joint. Chin. J. Nonferrous Met. 2015, 25, 30–35. [Google Scholar]
- Richards, R.W.; Jones, R.D.; Clements, P.D.; Clarke, H. Metallurgy of Continuous Hot-Dip Aluminizing. Int. Mater. Rev. 1994, 39, 191–212. [Google Scholar] [CrossRef]
- Ren, D.X.; Liu, L.M. Interface microstructure and mechanical properties of arc spot welding Mg-steel dissimilar joint with Cu interlayer. Mater. Des. 2014, 59, 369–376. [Google Scholar] [CrossRef]
- Pouranvari, M.; Abbasi, M. Dissimilar gas tungsten arc weld-brazing of Al/steel using Al-Si filler metal: Microstructure and strengthening mechanisms. J. Alloys Compd. 2018, 749, 121–127. [Google Scholar] [CrossRef]
- Tao, T.; Liu, J.; Zhou, D.; Li, H. Influence of laser-Sn powder coupling on microstructure and mechanical properties of fusion welded AZ31B-alloy to DP590-steel. Opt. Laser Technol. 2022, 152, 108091. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Q.; Che, H.; Li, Y.; Lei, M. Effects of Silicon on the Microstructure and Properties of Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon. Acta Metall. Sin. 2020, 56, 278–290. [Google Scholar] [CrossRef]
Material | Al | Zn | Mn | Si | C | S | P | Fe | Mg |
---|---|---|---|---|---|---|---|---|---|
DP590 | 0.02 | - | 1.60 | 0.0466 | 0.068 | 0.015 | 0.011 | Bal | - |
AZ31B | 3.12 | 0.95 | 0.15 | 0.10 | - | - | - | 0.03 | Bal |
Point | Fe | Mg | Al | Cu | Zn | Si | Possible Phase |
---|---|---|---|---|---|---|---|
1 | 50.89 | 31.78 | 14.00 | 2.37 | 0.97 | -- | Fe3Al+α-Mg |
2 | 0.59 | 92.47 | 1.63 | 1.93 | 3.38 | -- | α-Mg |
3 | -- | 70.47 | 4.13 | 23.14 | -- | -- | (Mg, Al)2Cu |
4 | 22.44 | 53.24 | 12.04 | 5.08 | 1.62 | 5.48 | Fe-(Al, Si) +α-Mg |
5 | 1.01 | 92.56 | 1.89 | 3.22 | 1.14 | 0.19 | α-Mg |
6 | 1.43 | 69.42 | 4.4 | 18.75 | 5.17 | 0.83 | (Mg, Al)2Cu |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, K.; Lei, M.; Zeng, A.; Zhang, H. Microstructure and Mechanical Properties of Laser Welded Magnesium Alloy/Steel Joint Using Cu-Si Composite Interlayer. Crystals 2022, 12, 1083. https://doi.org/10.3390/cryst12081083
Yu K, Lei M, Zeng A, Zhang H. Microstructure and Mechanical Properties of Laser Welded Magnesium Alloy/Steel Joint Using Cu-Si Composite Interlayer. Crystals. 2022; 12(8):1083. https://doi.org/10.3390/cryst12081083
Chicago/Turabian StyleYu, Kai, Min Lei, Aori Zeng, and Hua Zhang. 2022. "Microstructure and Mechanical Properties of Laser Welded Magnesium Alloy/Steel Joint Using Cu-Si Composite Interlayer" Crystals 12, no. 8: 1083. https://doi.org/10.3390/cryst12081083
APA StyleYu, K., Lei, M., Zeng, A., & Zhang, H. (2022). Microstructure and Mechanical Properties of Laser Welded Magnesium Alloy/Steel Joint Using Cu-Si Composite Interlayer. Crystals, 12(8), 1083. https://doi.org/10.3390/cryst12081083