Nano- and Crystal Engineering Approaches in the Development of Therapeutic Agents for Neoplastic Diseases
Abstract
:1. Introduction
2. Pathology of Neoplastic Disease
General Treatment Modalities
3. Co-Crystals
Anticancer API Co-Crystals
4. Nanocrystals and Nano Co-Crystals (NCC)
Nanocrystals and Nano Co-Crystals in Cancer Treatment
5. Regulatory Limitations of Crystalline Products
FDA | EMA | Ref. |
---|---|---|
Regulatorily categorized as polymorph of the API | Regulatorily categorized as API | [109] |
Composed of API and another molecule (food or drug co-former) | Composed of an API and a co-former in fixed stoichiometric ratio | [22,106,113] |
Co-former regarded as an excipient | Co-former regarded as a reagent | [20,109] |
New chemical entity or new active substance registration is not possible | New chemical entity or new active substance registration possible only if difference in efficacy or safety is proved | [22,106,113] |
Co-crystal is classified as a polymorph of the API | Co-crystal is classified as similar to the salt of the same active pharmaceutical ingredient | [20,109] |
US—Drug master Files (DMF)/EMA—Active substance master file (ASMF) registration can be possible but not required | US—Drug master files (DMF)/EMA—Active substance master file (ASMF) registration must be filed | [101,109] |
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Cancer. 2021. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 10 November 2021).
- Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health 2019, 9, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Soni, N.K.; Sonali, L.; Singh, A.; Mangla, B.; Neupane, Y.R.; Kohli, K. Nanostructured lipid carrier potentiated oral delivery of raloxifene for breast cancer treatment. Nanotechnology 2020, 31, 475101. [Google Scholar] [CrossRef] [PubMed]
- Seger, A.C.; Churchill, W.W.; Keohane, C.A.; Belisle, C.D.; Wong, S.T.; Sylvester, K.W.; Chesnick, M.A.; Burdick, E.; Wien, M.F.; Cotugno, M.C. Impact of robotic antineoplastic preparation on safety, workflow, and costs. J. Oncol. Pract. 2012, 8, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Tang, M. Safety of novel liposomal drugs for cancer treatment: Advances and prospects. Chem. Biol. Interact. 2018, 295, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Khan, A.R.; Fu, M.; Ji, J.; Yu, A.; Zhai, G. Current development in the formulations of non-injection administration of paclitaxel. Int. J. Pharm. 2018, 542, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Chanes, D.C.; Pedreira, M.d.L.G.; de Gutiérrez, M.G.R. Antineoplastic agents extravasation from peripheral intravenous line in children: A simple strategy for a safer nursing care. Eur. J. Oncol. Nurs. 2012, 16, 17–25. [Google Scholar] [CrossRef]
- Tucker, G.T. Pharmacokinetic considerations and challenges in oral anticancer drug therapy. Clin. Pharm 2019, 10. [Google Scholar] [CrossRef]
- Tran, P.; Pyo, Y.-C.; Kim, D.-H.; Lee, S.-E.; Kim, J.-K.; Park, J.-S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics 2019, 11, 132. [Google Scholar] [CrossRef] [Green Version]
- Gala, U.H.; Miller, D.A.; Williams III, R.O. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim. Et Biophys. Acta (BBA)-Rev. Cancer 2020, 1873, 188319. [Google Scholar] [CrossRef]
- Ahmad, J.; Amin, S.; Rahman, M.; Abdur Rub, R.; Singhal, M.; Zaki Ahmad, M.; Rahman, Z.; Addo, R.T.; Jalees Ahmad, F.; Mushtaq, G. Solid matrix based lipidic nanoparticles in oral cancer chemotherapy: Applications and pharmacokinetics. Curr. Drug Metab. 2015, 16, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Glomme, A.; März, J.; Dressman, J.B. Predicting the intestinal solubility of poorly soluble drugs. In Pharmacokinetic Profiling in Drug Research; Wiley: Hoboken, NJ, USA, 2006; pp. 259–280. [Google Scholar] [CrossRef]
- Tan, X.; Zhong, Y.; He, L.; Zhang, Y.; Jing, G.; Li, S.; Wang, J.; He, H.; Tang, X. Morphological and crystalline transitions in monohydrous and anhydrous aripiprazole for a long-acting injectable suspension. AAPS PharmSciTech 2017, 18, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Varshosaz, J.; Ghassami, E.; Ahmadipour, S. Crystal engineering for enhanced solubility and bioavailability of poorly soluble drugs. Curr. Pharm. Des. 2018, 24, 2473–2496. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.K.; Ramamurty, U.; Desiraju, G.R. Mechanical property design of molecular solids. Curr. Opin. Solid State Mater. Sci. 2016, 20, 361–370. [Google Scholar] [CrossRef]
- Weng, X.-y.; Pang, Z.-t.; Qian, S.; Wei, Y.-f.; Gao, Y.; Zhang, J.-j. Druggability enhancement by modification of physicochemical properties of drugs via crystal engineering. Acta Pharm. Sin. 2020, 55, 2883–2891. [Google Scholar] [CrossRef]
- Naqvi, A.; Ahmad, M.; Minhas, M.U.; Khan, K.U.; Batool, F.; Rizwan, A. Preparation and evaluation of pharmaceutical co-crystals for solubility enhancement of atorvastatin calcium. Polym. Bull. 2020, 77, 6191–6211. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Lipert, M.; Bak, A. Mitigating cocrystal physical stability liabilities in preclinical formulations. J. Pharm. Sci. 2017, 106, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Vemuri, V.D.; Lankalapalli, S. Insight into concept and progress on pharmaceutical co-crystals: An overview. Indian J. Pharm. Educ. Res 2019, 53, 522–538. [Google Scholar] [CrossRef] [Green Version]
- Sekhon, B.S. Pharmaceutical Co-Crystals-A Review; ARS Pharmaceuticals: San Diego, CA, USA, 2009. [Google Scholar]
- Sekhon, B.S. Drug-Drug Co-Crystals; Springer: Berlin/Heidelberg, Germany, 2012; Volume 20, pp. 1–2. [Google Scholar]
- Wang, X.; Zhang, L.; Ma, D.; Tang, X.; Zhang, Y.; Yin, T.; Gou, J.; Wang, Y.; He, H. Characterizing and Exploring the Differences in Dissolution and Stability Between Crystalline Solid Dispersion and Amorphous Solid Dispersion. AAPS PharmSciTech 2020, 21, 1–15. [Google Scholar] [CrossRef]
- Bhatt, P.M.; Azim, Y.; Thakur, T.S.; Desiraju, G.R. Co-crystals of the anti-HIV drugs lamivudine and zidovudine. Cryst. Growth Des. 2009, 9, 951–957. [Google Scholar] [CrossRef]
- Wang, X.; Du, S.; Zhang, R.; Jia, X.; Yang, T.; Zhang, X. Drug-drug cocrystals: Opportunities and challenges. Asian J. Pharm. Sci. 2021, 16, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Yeh, K.L.; Lee, T. Intensified crystallization processes for 1:1 drug–drug cocrystals of sulfathiazole–theophylline, and sulfathiazole–sulfanilamide. Cryst. Growth Des. 2018, 18, 1339–1349. [Google Scholar] [CrossRef]
- Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm. 2011, 419, 1–11. [Google Scholar] [CrossRef]
- Chountoulesi, M.; Pispas, S.; Tseti, I.K.; Demetzos, C. Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms. Pharmaceuticals 2022, 15, 429. [Google Scholar] [CrossRef]
- Oprita, A.; Sevastre, A.-S. New pharmaceutical dosage forms used in the treatment of breast cancer. Polymeric micelles. Med. Oncol. 2020, 1, 38–52. [Google Scholar] [CrossRef]
- Almoshari, Y. Development, Therapeutic Evaluation and Theranostic Applications of Cubosomes on Cancers: An Updated Review. Pharmaceutics 2022, 14, 600. [Google Scholar] [CrossRef]
- Miao, X.; Yang, W.; Feng, T.; Lin, J.; Huang, P. Drug nanocrystals for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2018, 10, e1499. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Liu, J.; Ran, L. A Review of Pharmaceutical Nano-Cocrystals: A Novel Strategy to Improve the Chemical and Physical Properties for Poorly Soluble Drugs. Crystals 2021, 11, 463. [Google Scholar] [CrossRef]
- Kumar, S. Pharmaceutical cocrystals: An overview. Indian J. Pharm. Sci. 2018, 79, 858–871. [Google Scholar] [CrossRef]
- Shord, S.S.; Medina, P. Cancer treatment and chemotherapy. In Pharmacotherapy: A Pathophysiologic Approach; McGraw-Hill: New York, NY, USA, 2014; p. 9e. [Google Scholar]
- Weston, A.; Harris, C.C. Chemical Carcinogenesis; Holland, Frei: Ottawa, ON, Canada, 1993. [Google Scholar]
- Stricker, T.P.; Neoplasia, K.V. Robbins & Cotran Pathologic Basis of Disease; Elsevier: Amsterdam, The Netherlands, 2018; pp. 259–330. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Dickens, E.; Ahmed, S. Principles of cancer treatment by chemotherapy. Surgery 2018, 36, 134–138. [Google Scholar]
- Santarpia, L.; Lippman, S.M.; El-Naggar, A.K. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets 2012, 16, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Aitipamula, S.; Banerjee, R.; Bansal, A.K.; Biradha, K.; Cheney, M.L.; Choudhury, A.R.; Desiraju, G.R.; Dikundwar, A.G.; Dubey, R.; Duggirala, N. Polymorphs, salts, and cocrystals: What’s in a name? Cryst. Growth Des. 2012, 12, 2147–2152. [Google Scholar] [CrossRef]
- Aakeröy, C.B. Crystal engineering: Strategies and architectures. Acta Crystallogr. Sect. B Struct. Sci. 1997, 53, 569–586. [Google Scholar] [CrossRef]
- Bavishi, D.D.; Borkhataria, C.H. Spring and parachute: How cocrystals enhance solubility. Prog. Cryst. Growth Charact. Mater. 2016, 62, 1–8. [Google Scholar] [CrossRef]
- Yadav, A.; Shete, A.; Dabke, A.; Kulkarni, P.; Sakhare, S. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci. 2009, 71, 359. [Google Scholar] [CrossRef] [Green Version]
- Hancock, B.C.; Zografi, G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 1997, 86, 1–12. [Google Scholar] [CrossRef]
- Hancock, B.C.; Parks, M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 2000, 17, 397–404. [Google Scholar] [CrossRef]
- Jain, S.; Patel, N.; Lin, S. Solubility and dissolution enhancement strategies: Current understanding and recent trends. Drug Dev. Ind. Pharm. 2015, 41, 875–887. [Google Scholar] [CrossRef]
- Pawar, N.; Saha, A.; Nandan, N.; Parambil, J.V. Solution cocrystallization: A scalable approach for cocrystal production. Crystals 2021, 11, 303. [Google Scholar] [CrossRef]
- Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm. 2013, 453, 101–125. [Google Scholar] [CrossRef] [PubMed]
- Kertesz, M. Pancake bonding: An unusual pi-stacking interaction. Chem.—A Eur. J. 2019, 25, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.; Sengupta, S.; Dey, S.K.; Steele, I.M.; Bhattacharyya, A.; Biswas, S.; Kumar, S. A pharmaceutical cocrystal with potential anticancer activity. RSC Adv. 2014, 4, 49070–49078. [Google Scholar] [CrossRef]
- Douroumis, D.; Ross, S.A.; Nokhodchi, A. Advanced methodologies for cocrystal synthesis. Adv. Drug Deliv. Rev. 2017, 117, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Sun, X.; Jiahui, C.; Cai, T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm. Sin. B 2021, 11, 2537–2564. [Google Scholar] [CrossRef]
- Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef]
- Devogelaer, J.J.; Meekes, H.; Tinnemans, P.; Vlieg, E.; De Gelder, R. Co-crystal Prediction by Artificial Neural Networks. Angew. Chem. Int. Ed. 2020, 59, 21711–21718. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, Q.; Wang, J.-R.; Mei, X. Cocrystals of Baicalein with Higher Solubility and Enhanced Bioavailability. Cryst. Growth Des. 2017, 17, 1893–1901. [Google Scholar] [CrossRef]
- Bandaru, R.K.; Rout, S.R.; Kenguva, G.; Gorain, B.; Alhakamy, N.A.; Kesharwani, P.; Dandela, R. Recent advances in pharmaceutical cocrystals: From bench to market. Front. Pharmacol. 2021, 12. [Google Scholar] [CrossRef]
- Liu, F.; Song, Y.; Liu, Y.-N.; Li, Y.-T.; Wu, Z.-Y.; Yan, C.-W. Drug-bridge-drug ternary cocrystallization strategy for antituberculosis drugs combination. Cryst. Growth Des. 2018, 18, 1283–1286. [Google Scholar] [CrossRef]
- Jubeen, F.; Liaqat, A.; Amjad, F.; Sultan, M.; Iqbal, S.Z.; Sajid, I.; Khan Niazi, M.B.; Sher, F. Synthesis of 5-fluorouracil cocrystals with novel organic acids as coformers and anticancer evaluation against HCT-116 colorectal cell lines. Cryst. Growth Des. 2020, 20, 2406–2414. [Google Scholar] [CrossRef]
- Niero, E.L.d.O.; Machado-Santelli, G.M. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. J. Exp. Clin. Cancer Res. 2013, 32, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, C.P.; Thorat, S.H.; Shaligram, P.S.; Suresha, P.; Gonnade, R.G. Drug–drug cocrystals of anticancer drugs erlotinib–furosemide and gefitinib–mefenamic acid for alternative multi-drug treatment. CrystEngComm 2020, 22, 6137–6151. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, N.; Xue, C.; Gao, S.; Deng, Z.; Li, M.; Liu, C.; Castellot, J.; Han, S. Potential anti-tumor drug: Co-crystal 5-fluorouracil-nicotinamide. ACS Omega 2020, 5, 15777–15782. [Google Scholar] [CrossRef]
- Nicolov, M.; Ghiulai, R.M.; Voicu, M.; Mioc, M.; Duse, A.O.; Roman, R.; Ambrus, R.; Zupko, I.; Moaca, E.A.; Coricovac, D.E. Cocrystal formation of betulinic acid and ascorbic acid: Synthesis, physico-chemical assessment, antioxidant, and antiproliferative activity. Front. Chem. 2019, 7, 92. [Google Scholar] [CrossRef]
- Min, W.U.; Xingang, L.; Yu, X.; Qi, C.; Xiurong, H.U.; Jun, Z.; Guping, T. Synthesis, characterization and antitumor activity of 5-fluorouracil-nicotinamide cocrystal. Zhejiang Da Xue Xue Bao Yi Xue Ban 2017, 46, 127–133. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Forbes, S.; Desper, J. Using Cocrystals To Systematically Modulate Aqueous Solubility and Melting Behavior of an Anticancer Drug. J. Am. Chem. Soc. 2009, 131, 17048–17049. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, U.; Choudhary, M.I.; Yousuf, S. Synthesis of co-crystals of anti-cancer nandrolone as a potential leads towards treatment of cancer. J. Mol. Struct. 2021, 1224, 128981. [Google Scholar] [CrossRef]
- Duan, C.; Liu, W.; Tao, Y.; Liang, F.; Chen, Y.; Xiao, X.; Zhang, G.; Chen, Y.; Hao, C. Two Novel Palbociclib-Resorcinol and Palbociclib-Orcinol Cocrystals with Enhanced Solubility and Dissolution Rate. Pharmaceutics 2022, 14, 23. [Google Scholar] [CrossRef]
- Aitipamula, S.; Chow, P.S.; Tan, R.B.H. Crystal Engineering of Tegafur Cocrystals: Structural Analysis and Physicochemical Properties. Cryst. Growth Des. 2014, 14, 6557–6569. [Google Scholar] [CrossRef]
- Pi, J.; Wang, S.; Li, W.; Kebebe, D.; Zhang, Y.; Zhang, B.; Qi, D.; Guo, P.; Li, N.; Liu, Z. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian J. Pharm. Sci. 2019, 14, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Fontana, F.; Figueiredo, P.; Zhang, P.; Hirvonen, J.T.; Liu, D.; Santos, H.A. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv. Drug Deliv. Rev. 2018, 131, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seremeta, K.P.; Bedogni, G.R.; Okulik, N.B.; Salomon, C.J. Nanocrystals for Improving the Biopharmaceutical Performance of Hydrophobic Drugs. In The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetic; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–14. [Google Scholar] [CrossRef]
- Thakor, P.; Yadav, B.; Modani, S.; Shastri, N.R. Preparation and optimization of nano-sized cocrystals using a quality by design approach. CrystEngComm 2020, 22, 2304–2314. [Google Scholar] [CrossRef]
- Witika, B.A.; Smith, V.J.; Walker, R.B. A comparative study of the effect of different stabilizers on the critical quality attributes of self-assembling nano co-crystals. Pharmaceutics 2020, 12, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M. Continuous engineering of nano-cocrystals for medical and energetic applications. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Witika, B.A.; Smith, V.J.; Walker, R.B. Quality by design optimization of cold sonochemical synthesis of zidovudine-lamivudine nanosuspensions. Pharmaceutics 2020, 12, 367. [Google Scholar] [CrossRef] [Green Version]
- Witika, B.A.; Smith, V.J.; Walker, R.B. Top-down synthesis of a lamivudine-zidovudine nano co-crystal. Crystals 2020, 11, 33. [Google Scholar] [CrossRef]
- Pawar, V.K.; Singh, Y.; Meher, J.G.; Gupta, S.; Chourasia, M.K. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery. J. Control. Release 2014, 183, 51–66. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Y.; Gemeinhart, R.A.; Wu, W.; Li, T. Developing nanocrystals for cancer treatment. Nanomedicine 2015, 10, 2537–2552. [Google Scholar] [CrossRef] [Green Version]
- Thanki, K.; Gangwal, R.P.; Sangamwar, A.T.; Jain, S. Oral delivery of anticancer drugs: Challenges and opportunities. J. Control. Release 2013, 170, 15–40. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Zhang, J.; Hao, L.; Guo, H.; Lou, H.; Zhang, D. Bexarotene nanocrystal—Oral and parenteral formulation development, characterization and pharmacokinetic evaluation. Eur. J. Pharm. Biopharm. 2014, 87, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hollis, C.P.; Zhang, Q.; Li, T. Preparation and antitumor study of camptothecin nanocrystals. Int. J. Pharm. 2011, 415, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.; Seguin, J.; Annereau, M.; Fleury, T.; Lai-Kuen, R.; Neri, G.; Lam, A.; Bally, M.; Mignet, N.; Corvis, Y. Preparation of parenteral nanocrystal suspensions of etoposide from the excipient free dry state of the drug to enhance in vivo antitumoral properties. Sci. Rep. 2020, 10, 18059. [Google Scholar] [CrossRef]
- Liu, M.; Hong, C.; Li, G.; Ma, P.; Xie, Y. The generation of myricetin–nicotinamide nanococrystals by top down and bottom up technologies. Nanotechnology 2016, 27, 395601. [Google Scholar] [CrossRef]
- Mohammad, I.S.; He, W.; Yin, L. A smart paclitaxel-disulfiram nanococrystals for efficient MDR reversal and enhanced apoptosis. Pharm. Res. 2018, 35, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-S.; Park, J.-S. Development of docetaxel nanocrystals surface modified with transferrin for tumor targeting. Drug Des. Dev. Ther. 2017, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Sheng, H.; Zhang, Y.; Nai, J.; Wang, S.; Dai, M.; Lin, G.; Zhu, L.; Zhang, Q. Preparation of oridonin nanocrystals and study of their endocytosis and transcytosis behaviours on MDCK polarized epithelial cells. Pharm. Biol. 2020, 58, 518–527. [Google Scholar] [CrossRef]
- Liang, P.; Wu, H.; Zhang, Z.; Jiang, S.; Lv, H. Preparation and characterization of parthenolide nanocrystals for enhancing therapeutic effects of sorafenib against advanced hepatocellular carcinoma. Int. J. Pharm. 2020, 583, 119375. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Zu, Y.; Zhang, Y. Preparation and characterization of paclitaxel nanosuspension using novel emulsification method by combining high speed homogenizer and high pressure homogenization. Int. J. Pharm. 2015, 490, 324–333. [Google Scholar] [CrossRef]
- Sharma, S.; Verma, A.; Teja, B.V.; Shukla, P.; Mishra, P.R. Development of stabilized paclitaxel nanocrystals: In-vitro and in-vivo efficacy studies. Eur. J. Pharm. Sci. 2015, 69, 51–60. [Google Scholar] [CrossRef]
- Poojary, K.K.; Nayak, G.; Vasani, A.; Kumari, S.; Dcunha, R.; Kunhiraman, J.P.; Gopalan, D.; Rao, R.R.; Mutalik, S.; Kalthur, S.G. Curcumin nanocrystals attenuate cyclophosphamide-induced testicular toxicity in mice. Toxicol. Appl. Pharmacol. 2021, 433, 115772. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Fu, X.; Du, C.; Xia, H.; Lai, Y.; Sun, Y. Enzyme/pH-triggered anticancer drug delivery of chondroitin sulfate modified doxorubicin nanocrystal. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1114–1124. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, A.; Pandit, J.K. Critical Process Parameters Evaluation of Modified Nanoprecipitation Method on Lomustine Nanoparticles and Cytostatic Activity Study on L132 Human Cancer Cell Line. J. Nanomed. Nanotechnol. 2012, 3, 149. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Guo, F.; Zheng, A.; Zhang, X.; Sun, J. Progress in the study of drug nanocrystals. Die Pharm. -Int. J. Pharm. Sci. 2015, 70, 757–764. [Google Scholar]
- Joseph, E.; Singhvi, G. Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. Nanomater. Drug Deliv. Ther. 2019, 91–116. [Google Scholar] [CrossRef]
- Choi, J.-S.; Park, J.-S. Surface modification of docetaxel nanocrystals with HER2 antibody to enhance cell growth inhibition in breast cancer cells. Colloids Surf. B Biointerfaces 2017, 159, 139–150. [Google Scholar] [CrossRef]
- Wang, J.; Muhammad, N.; Li, T.; Wang, H.; Liu, Y.; Liu, B.; Zhan, H. Hyaluronic acid-coated camptothecin nanocrystals for targeted drug delivery to enhance anticancer efficacy. Mol. Pharm. 2020, 17, 2411–2425. [Google Scholar] [CrossRef]
- Zhan, H.; Liang, J.F. Extreme activity of drug nanocrystals coated with a layer of non-covalent polymers from self-assembled boric acid. Sci. Rep. 2016, 6, 38668. [Google Scholar] [CrossRef] [Green Version]
- Kavanagh, O.N.; Croker, D.M.; Walker, G.M.; Zaworotko, M.J. Pharmaceutical cocrystals: From serendipity to design to application. Drug Discov. Today 2019, 24, 796–804. [Google Scholar] [CrossRef] [Green Version]
- Malamatari, M.; Ross, S.A.; Douroumis, D.; Velaga, S.P. Experimental cocrystal screening and solution based scale-up cocrystallization methods. Adv. Drug Deliv. Rev. 2017, 117, 162–177. [Google Scholar] [CrossRef]
- Kumari, N.; Roy, P.; Roy, S.; Parmar, P.K.; Chakraborty, S.; Das, S.; Pandey, N.; Bose, A.; Bansal, A.K.; Ghosh, A. Investigating the Role of the Reduced Solubility of the Pirfenidone–Fumaric Acid Cocrystal in Sustaining the Release Rate from Its Tablet Dosage Form by Conducting Comparative Bioavailability Study in Healthy Human Volunteers. Mol. Pharm. 2022, 19, 1557–1572. [Google Scholar] [CrossRef] [PubMed]
- Kale, D.P.; Zode, S.S.; Bansal, A.K. Challenges in Translational Development of Pharmaceutical Cocrystals. J. Pharm. Sci. 2017, 106, 457–470. [Google Scholar] [CrossRef]
- Panzade, P.S.; Shendarkar, G.R. Pharmaceutical cocrystal: A game changing approach for the administration of old drugs in new crystalline form. Drug Dev. Ind. Pharm. 2020, 46, 1559–1568. [Google Scholar] [CrossRef] [PubMed]
- US FDA. Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry; US FDA: Silver Spring, MD, USA, 2018.
- Zhou, D.; Qiu, Y. Understanding drug properties in formulation and process design of solid oral products. J. Valid. Technol. 2010, 16, 74. [Google Scholar]
- Das, P.; Maity, A.; Yeluri, U.K. Co-crystals–A Rising horizon for formulating poorly soluble drugs. Continuum 2018, 2, 5. [Google Scholar]
- Garg, U.; Azim, Y. Challenges and opportunities of pharmaceutical cocrystals: A focused review on non-steroidal anti-inflammatory drugs. RSC Med. Chem. 2021, 12, 705–721. [Google Scholar] [CrossRef]
- Steed, J.W. The role of co-crystals in pharmaceutical design. Trends Pharmacol. Sci. 2013, 34, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Healy, A.M.; Worku, Z.A.; Kumar, D.; Madi, A.M. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Adv. Drug Deliv. Rev. 2017, 117, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Kuminek, G.; Cao, F.; da Rocha, A.B.d.O.; Cardoso, S.G.; Rodríguez-Hornedo, N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv. Drug Deliv. Rev. 2016, 101, 143–166. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumar, S.; Nanda, A. A review about regulatory status and recent patents of pharmaceutical co-crystals. Adv. Pharm. Bull. 2018, 8, 355. [Google Scholar] [CrossRef]
- Medicines Agency, E. Reflection Paper on the Use of Cocrystals of Active Substances in Medicinal Products; European Medicines Agency: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Ringle, S. Regulatory Implications Using API Cocrystals for Generic Medicinal Products within the EU and US; Heinische Friedrich-Wilhelms University: Hamburg, Germany, 2018. [Google Scholar]
- Brittain, H.G. Pharmaceutical cocrystals: The coming wave of new drug substances. J. Pharm. Sci. 2013, 102, 311–317. [Google Scholar] [CrossRef]
- Yamamoto, K.; Tsutsumi, S.; Ikeda, Y. Establishment of cocrystal cocktail grinding method for rational screening of pharmaceutical cocrystals. Int. J. Pharm. 2012, 437, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, H.; Hirakura, Y.; Yuda, M.; Terada, K. Coformer screening using thermal analysis based on binary phase diagrams. Pharm. Res. 2014, 31, 1946–1957. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.; Tocher, D.A.; Price, S.L. Computational prediction of salt and cocrystal structures—Does a proton position matter? Int. J. Pharm. 2011, 418, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Tsutsumi, S.; Yamamoto, K.; Ikeda, Y.; Moriwaki, T. High-throughput cocrystal slurry screening by use of in situ Raman microscopy and multi-well plate. Int. J. Pharm. 2010, 399, 52–59. [Google Scholar] [CrossRef]
- Berry, D.J.; Seaton, C.C.; Clegg, W.; Harrington, R.W.; Coles, S.J.; Horton, P.N.; Hursthouse, M.B.; Storey, R.; Jones, W.; Friscic, T. Applying hot-stage microscopy to co-crystal screening: A study of nicotinamide with seven active pharmaceutical ingredients. Cryst. Growth Des. 2008, 8, 1697–1712. [Google Scholar] [CrossRef]
- Shishkina, S.V.; Ukrainets, I.V.; Petrushova, L.A. Competition between intermolecular hydrogen bonding and stacking in the crystals of 4-Hydroxy-N-(pyridin-2-yl)-2, 2-dioxo-1H-2λ6, 1-benzothiazine-3-carboxamides. Zeitschrift für Kristallographie Cryst. Mater. 2017, 232, 307–316. [Google Scholar] [CrossRef]
- Karagianni, A.; Quodbach, J.; Weingart, O.; Tsiaxerli, A.; Katsanou, V.; Vasylyeva, V.; Janiak, C.; Kachrimanis, K. Structural and Energetic Aspects of Entacapone-Theophylline-Water Cocrystal. Solids 2022, 3, 66–92. [Google Scholar] [CrossRef]
- Li, P.; Chu, Y.; Wang, L.; Wenslow, R.M.; Yu, K.; Zhang, H.; Deng, Z. Structure determination of the theophylline–nicotinamide cocrystal: A combined powder XRD, 1D solid-state NMR, and theoretical calculation study. CrystEngComm 2014, 16, 3141–3147. [Google Scholar] [CrossRef]
- Titus, D.; Samuel, E.J.J.; Roopan, S.M. Nanoparticle characterization techniques. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 303–319. [Google Scholar]
- Chaudhari, S.; Nikam, S.A.; Khatri, N.; Wakde, S. Co-crystals: A review. J. Drug Deliv. Ther. 2018, 8, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Keramatnia, F.; Shayanfar, A.; Jouyban, A. Thermodynamic solubility profile of carbamazepine–cinnamic acid cocrystal at different pH. J. Pharm. Sci. 2015, 104, 2559–2565. [Google Scholar] [CrossRef] [PubMed]
- Thangarasu, S.; Siva, V.; Athimoolam, S.; Bahadur, S.A. Molecular structure, spectroscopic and quantum chemical studies on benzoic acid and succinic acid co-crystals of 2-aminopyrimidine. J. Theor. Comput. Chem. 2018, 17, 1850021. [Google Scholar] [CrossRef]
- Szalay, S.; Pfeffer, M.; Murg, V.; Barcza, G.; Verstraete, F.; Schneider, R.; Legeza, Ö. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 2015, 115, 1342–1391. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, J.; Xu, X.; Ren, G.; Zhu, B.; Hong, M.; Li, Z. Study of Cycloxaprid Co-crystals: Characterization, Theory Calculation, Solubility, and Stability. Cryst. Growth Des. 2022. [Google Scholar] [CrossRef]
Medication Class | Mechanism of Action | Examples | Clinical Application |
---|---|---|---|
Alkylating agents | Act directly on DNA causing cross-linking of DNA strands, abnormal base pairing, or DNA strand breaks, thus preventing the cell from dividing. | Chlorambucil Cyclophosphamide Cisplatin Carboplatin | Treatment of slow-growing cancers |
Nitrosoureas | Slow down or stop enzymes that help repair DNA. | Carmustine Lomustine | Malignant gliomas, brain metastases of different origin, melanomas Hodgkin disease |
Anti-metabolites | Replace natural substances as building blocks in DNA molecules, thereby altering the function of enzymes required for cell metabolism and protein synthesis. | Fluorouracil Methotrexate Fludarabine | Leukemias Cancers of the breast, ovary, and the intestinal tract |
Plant alkaloids and natural products | Act specifically by blocking the ability of a cancer cell to divide and become two cells by inhibiting the dynamics of microtubules by binding to β-tubulins. | Vincristine Paclitaxel Topotecan | Various forms of cancer |
Anti-tumor antibiotics | Act by binding with DNA and preventing ribonucleic acid synthesis, a key step in the creation of proteins, which are necessary for cell survival. Cause the strands of genetic material that make up DNA to uncoil, thereby preventing the cell from reproducing. | Bleomycin Doxorubicin Mitoxantrone |
|
Hormonal agents:
| Induce apoptosis, or programmed cell death, in certain lymphoid cell populations Competes with or block hormone receptors, inhibiting hormone-dependent cell-growth. | Prednisone Dexamethasone Tamoxifen Leuprolide | Leukemia, multiple myeloma, and lymphoma Control the growth of breast, uterine and prostate cancers |
Biological response modifiers | Strengthen the bodies’ immune system to fight the growth of cancer. | Herceptin and Avastin Erbitux and Rituxan | Leukemia, lymphoma, melanoma, breast cancer, bladder cancer |
API | CCF | API-CCF Interaction | Method of Preparation | In Vitro Model | In Vivo Model | Result | Ref. |
---|---|---|---|---|---|---|---|
5-FU | Benzoic acid | Hydrogen bonding | Neat grinding and slow evaporation | MTT assay using human colorectal cancer cell (HCT 116) | - | Increased anticancer activity | [58] |
Cinnamic acid | Hydrogen bonding | Neat grinding and slow evaporation | MTT assay using human colorectal cancer cell (HCT 116) | - | Increased anticancer activity | [58] | |
Malic acid | Hydrogen bonding | Slow evaporation and neat grinding | MTT assay using human colorectal cancer cell (HCT 116) | - | Increased anticancer activity | [58] | |
Nicotinamide | Hydrogen bonding | Cooling technology | MTT assay and HE staining using human liver cell (BEL-7402/5-FU) | - | Enhanced antitumor activity Enhanced anticancer effect than 5-FU Solubility increased | [63] | |
Nicotinamide | Hydrogen bonding and lone pair electron−π stacking | Solvent evaporation and liquid phase-assisted grinding | MTT assay using HCT 116 tumor cells | Mice | The co-crystal had more anti-tumor properties than the 5-FU and solubility increased | [61] | |
Succinic acid | Hydrogen bonding | Neat grinding Slow evaporation | MTT assay using human colorectal cancer cell (HCT116) | Increased anticancer activity | [58] | ||
Betulinic acid | Ascorbic acid | Hydrogen bonding | Hydrothermal method | Alamar blue assay and MTT assay using murine melanoma cells, human breast cancer (MCF-7,MDA-MB-231) cells, HaCat cells and cervical cancer (HeLa) | Higher cytotoxic activity Enhanced solubility and bioavailability | [62] | |
Hexamethylenebisacetamide | Dicarboxylic acids | Hydrogen bonding | Solvothermal synthesis | Lung cancer cells | Diacids with longer chains led to extremely low solubility | [64]. | |
Nandrolone | 3-amino-1,2,4-triazole | Hydrogen bonding | Solution reflux | MTT assay using cervical HeLa cells and 3T3 fibroblast cell line | Non-cytotoxic against 3T3 normal fibroblast cell line | [65] | |
Salicylic acid | Hydrogen bonding | Ball milling | MTT assay using cervical HeLa cells and 3T3 fibroblast cell line | Co-crystal is a potent anticancer agent and is non-cytotoxic against 3T3 normal fibroblast cell line | [65] | ||
Palbociclib | Orcinol | Hydrogen bonding | Solvent evaporation | MTT assay using human umbilical vein endothelial cell line (HUVEC) | Rats | Lower cytotoxicity compared to palbociclib Enhanced bioavailability and solubility increased | [66] |
Resorcinol | Hydrogen bonding | Solvent evaporation | MTT assay using human umbilical vein endothelial cell line (HUVEC) | Rats | Enhanced bioavailability and biosafety Enhanced absorption in rats and better plasma distribution | [66] | |
Tegafur | Isonicotinamide | Hydrogen bonding | Solvent evaporation and neat grinding | Solubility increased | [67] |
Anti-Cancer Agent | ROA | MoM | Stabilizers | Animal Model/Cell Model | Observations | Ref. |
---|---|---|---|---|---|---|
Paclitaxel Nanocrystals | Oral Route | HPH | Male Wistar rats weighing 250 ± 20 g |
| [87,88] | |
Paclitaxel– disulfiram NCC | Parenteral route | AP | Polyvinyl pyrrolidone (PVP) | Human lung adenocarcinoma A549 cells and Taxol resistant Taxol cells were used in vitro. |
| [83] |
Paclitaxel folate nanocrystals (PTX-folate) | Oral route | HPH | Pluronic® F-127 | Human carcinoma cell line |
| |
Bexarotene nanocrystals | Oral Route | MF&AP | Lecithin and Pluronic® F-68 | Wistar rats of body weighing 250 ± 20 g |
| [79] |
Baicalein–nicotinamide NCC | Oral route | HPH | Poloxamer 188 | Sprague–Dawley rats weighing 250 ± 20 g |
| [68] |
Etoposide Nanocrystal suspension | Parenteral route | AP | Pluronic® F-127 | Mice model |
| [81] |
Curcumin nanocrystals attenuate cyclophosphamide | Parenteral route | AP | Swiss albino mice induced testicular toxicity |
| [89] | |
Chondroitin sulphate modified doxorubicin nanocrystals | Parenteral route | SE | Cancer cells were used in vitro |
| [90] | |
AP | [91] | |||||
Oridonin (iv) nanocrystals (ORI-NCs) | Parenteral route | AP | Polyvinyl pyrrolidone | There was no animal model instead MDCK cells were used in vitro |
| [85] |
Sorafenib parthenolide nanocrystals (Sora/PTL-NCs) | Parenteral route | HPH | Poloxamer 188 | Female nude mice model |
| [86] |
Rapamycin nanocrystals (Rapumune®) | Oral route | WMM | Poloxamer 188 & Povidone | Rapamycin mouse model |
| [92,93] |
Docetaxel Nanocrystals surface-modified with Herceptin® (HCT-DTX-NCs) | Parenteral route | SE | Tween® 80 | Human lung cancer cell line, MCF cells |
| [94] |
Docetaxel nanocrystals modified with apo-Transferrin human (Tf) (Tf-DTX-NCs) | Parenteral route | AP | Transferrin | A549 cells |
| [84] |
Campothecin nanocrystals | Parenteral route | AP | Hyaluronic acid | CD44 positive cancer cells |
| [95] |
Campothecin nanocrystals | Parenteral route | AP | Boric acid | Human cervical carcinoma Hela cells and Human carcinoma A549 |
| [96] |
Co-Crystal | Composition | Indication | Status | Ref. |
---|---|---|---|---|
Seglentis® | Tramadol–celecoxib (1:1) | Acute postoperative pain | Marketed (2021) | [98] |
Imbruvica® | Ibrutinib | Chronic lymphocytic leukemia | Marketed (2021) | [99] |
Steglatro® | Ertugliflozin | Type-2 diabetes mellitus | Marketed (2017) | [56,61] |
Steglujan® | Ertugliflozin and Sitagliptin | Type-2 diabetes mellitus | Marketed (2017) | [61,97] |
Beta-chlor® | Chloral hydrate and betaine | Sedation | Marketed (2016) | [56,97] |
Entresto® | Sacubitril and Valsartan | Used for reducing the risk of heart failure | Marketed (2015) | [56,61] |
Suglat® | Ipragliflozin L-Proline | Used in the treatment of diabetes mellitus type 2 | Marketed (2014) | [60,65,100] |
Lexapro® | Escitalopram oxalate | Depression | Marketed (2009) | [56,98] |
Dramamine® | Diphenhydramine and 8-chlorotheophylline | Prevention of motion sickness (nausea and vomiting) | Marketed (1972) | [25] |
Depakote® Epilim and Divalproex sodium | Valproic acid exists as an acid form and a sodium salt (sodium valproate) form whereas the co-crystal form contains both valproic acid and sodium valproate | Epilepsy | Marketed (1967) | [26,60,100] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiyonga, E.M.; Kekani, L.N.; Chidziwa, T.V.; Kahwenga, K.D.; Bronkhorst, E.; Milne, M.; Poka, M.S.; Mokhele, S.; Demana, P.H.; Witika, B.A. Nano- and Crystal Engineering Approaches in the Development of Therapeutic Agents for Neoplastic Diseases. Crystals 2022, 12, 926. https://doi.org/10.3390/cryst12070926
Kiyonga EM, Kekani LN, Chidziwa TV, Kahwenga KD, Bronkhorst E, Milne M, Poka MS, Mokhele S, Demana PH, Witika BA. Nano- and Crystal Engineering Approaches in the Development of Therapeutic Agents for Neoplastic Diseases. Crystals. 2022; 12(7):926. https://doi.org/10.3390/cryst12070926
Chicago/Turabian StyleKiyonga, Emmanuel M., Linda N. Kekani, Tinotenda V. Chidziwa, Kudzai D. Kahwenga, Elmien Bronkhorst, Marnus Milne, Madan S. Poka, Shoeshoe Mokhele, Patrick H. Demana, and Bwalya A. Witika. 2022. "Nano- and Crystal Engineering Approaches in the Development of Therapeutic Agents for Neoplastic Diseases" Crystals 12, no. 7: 926. https://doi.org/10.3390/cryst12070926
APA StyleKiyonga, E. M., Kekani, L. N., Chidziwa, T. V., Kahwenga, K. D., Bronkhorst, E., Milne, M., Poka, M. S., Mokhele, S., Demana, P. H., & Witika, B. A. (2022). Nano- and Crystal Engineering Approaches in the Development of Therapeutic Agents for Neoplastic Diseases. Crystals, 12(7), 926. https://doi.org/10.3390/cryst12070926