Nanocarrier-Based Management of Venous and Arterial Thrombosis
Abstract
:1. Introduction
2. Nanocarriers for the Management of Venous Thromboembolism
2.1. Pathophysiology of VTE
2.2. Nanotechnology-Based Approaches for Diagnosis and Treatment of VTE
3. Nanocarriers for the Management of Arterial Thrombosis
3.1. Physiopathology of Arterial Thrombosis
3.2. Nanotechnology-Based Approaches for Treatment of Arterial Thrombosis
3.2.1. H2O2 Targeting Strategies
3.2.2. Hemodynamic Shear-Stress Responsive Nanoparticles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nicholls, M. The ESC atlas of cardiology. Eur. Heart J. 2019, 40, 7–8. [Google Scholar] [CrossRef] [PubMed]
- Leong, D.P.; Joseph, P.G.; McKee, M.; Anand, S.S.; Teo, K.K.; Schwalm, J.-D.; Yusuf, S. Reducing the global burden of cardiovascular disease, part 2: Prevention and treatment of cardiovascular disease. Circ. Res. 2017, 121, 695–710. [Google Scholar] [CrossRef] [PubMed]
- Cicha, I. Thrombosis: Novel nanomedical concepts of diagnosis and treatment. World J. Cardiol. 2015, 7, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.R. Diseases of Small and Medium-sized Blood Vessels. In Cardiovascular Pathology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 125–168. [Google Scholar]
- Kushner, A.; West, W.P.; Pillarisetty, L.S. Virchow Triad. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Griffin, M.T.; Zhu, Y.; Liu, Z.; Aidun, C.K.; Ku, D.N. Inhibition of high shear arterial thrombosis by charged nanoparticles. Biomicrofluidics 2018, 12, 042210. [Google Scholar] [CrossRef]
- Fuster, V.; Bhatt, D.L.; Califf, R.M.; Michelson, A.D.; Sabatine, M.S.; Angiolillo, D.J.; Bates, E.R.; Cohen, D.J.; Coller, B.S.; Furie, B.; et al. Guided antithrombotic therapy: Current status and future research direction: Report on a National Heart, Lung and Blood Institute working group. Circulation 2012, 126, 1645–1662. [Google Scholar] [CrossRef]
- Shen, M.; Wang, Y.; Hu, F.; Lv, L.; Chen, K.; Xing, G. Thrombolytic agents: Nanocarriers in targeted release. Molecules 2021, 26, 6776. [Google Scholar] [CrossRef]
- Haba, M.; Ștefan, C.; Șerban, D.N.; Șerban, L.; Tudorancea, I.M.; Haba, R.M.; Mitu, O.; Iliescu, R.; Tudorancea, I. Nanomaterial-Based Drug Targeted Therapy for Cardiovascular Diseases: Ischemic Heart Failure and Atherosclerosis. Crystals 2021, 11, 1172. [Google Scholar] [CrossRef]
- Giménez, V.M.M.; Kassuha, D.E.; Manucha, W. Nanomedicine applied to cardiovascular diseases: Latest developments. Ther. Adv. Cardiovasc. Dis. 2017, 11, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Grosse, S.D.; Nelson, R.E.; Nyarko, K.A.; Richardson, L.C.; Raskob, G.E. The economic burden of incident venous thromboembolism in the United States: A review of estimated attributable healthcare costs. Thromb. Res. 2016, 137, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Moheimani, F.; Jackson, D.E. Venous thromboembolism: Classification, risk factors, diagnosis, and management. ISRN Hematol. 2011, 2011, 124610. [Google Scholar] [CrossRef] [Green Version]
- Phillippe, H.M. Overview of venous thromboembolism. Am. J. Manag. Care 2017, 23, S376–S382. [Google Scholar]
- Heit, J.A. Epidemiology of venous thromboembolism. Nat. Rev. Cardiol. 2015, 12, 464–474. [Google Scholar] [CrossRef]
- Martin, K.A.; Molsberry, R.; Cuttica, M.J.; Desai, K.R.; Schimmel, D.R.; Khan, S.S. Time trends in pulmonary embolism mortality rates in the united states, 1999 to 2018. J. Am. Heart Assoc. 2020, 9, e016784. [Google Scholar] [CrossRef]
- Di Nisio, M.; van Es, N.; Büller, H.R. Deep vein thrombosis and pulmonary embolism. Lancet 2016, 388, 3060–3073. [Google Scholar] [CrossRef]
- Line, B.R. Pathophysiology and diagnosis of deep venous thrombosis. Semin. Nucl. Med. 2001, 31, 90–101. [Google Scholar] [CrossRef]
- Luo, M.; Du, M.; Shu, C.; Liu, S.; Li, J.; Zhang, L.; Li, X. The Function of microRNAs in Pulmonary Embolism: Review and Research Outlook. Front. Pharmacol. 2021, 12, 743945. [Google Scholar] [CrossRef]
- Lin, K.Y.; Kwong, G.A.; Warren, A.D.; Wood, D.K.; Bhatia, S.N. Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano 2013, 7, 9001–9009. [Google Scholar] [CrossRef]
- Dudani, J.S.; Buss, C.G.; Akana, R.T.K.; Kwong, G.A.; Bhatia, S.N. Sustained-release synthetic biomarkers for monitoring thrombosis and inflammation using point-of-care compatible readouts. Adv. Funct. Mater. 2016, 26, 2919–2928. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Bachelet-Violette, L.; Rouzet, F.; Beilvert, A.; Autret, G.; Maire, M.; Menager, C.; Louedec, L.; Choqueux, C.; Saboural, P.; et al. Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine 2015, 10, 73–87. [Google Scholar] [CrossRef]
- Liu, J.; Xu, J.; Zhou, J.; Zhang, Y.; Guo, D.; Wang, Z. Fe3O4-based PLGA nanoparticles as MR contrast agents for the detection of thrombosis. Int. J. Nanomed. 2017, 12, 1113–1126. [Google Scholar] [CrossRef] [Green Version]
- Pluskota, E.; Soloviev, D.A.; Bdeir, K.; Cines, D.B.; Plow, E.F. Integrin alphaMbeta2 orchestrates and accelerates plasminogen activation and fibrinolysis by neutrophils. J. Biol. Chem. 2004, 279, 18063–18072. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Blaine, K.P.; Cullinane, A.; Hall, C.; Dulau-Florea, A.; Sun, J.; Chenwi, H.F.; Graninger, G.M.; Harper, B.; Thompson, K.; et al. Pulmonary arterial hypertension patients display normal kinetics of clot formation using thrombelastography. Pulm. Circ. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Temme, S.; Grapentin, C.; Quast, C.; Jacoby, C.; Grandoch, M.; Ding, Z.; Owenier, C.; Mayenfels, F.; Fischer, J.W.; Schubert, R.; et al. Noninvasive imaging of early venous thrombosis by 19F magnetic resonance imaging with targeted perfluorocarbon nanoemulsions. Circulation 2015, 131, 1405–1414. [Google Scholar] [CrossRef] [Green Version]
- Khurshid, H.; Shi, Y.; Berwin, B.L.; Weaver, J.B. Evaluating blood clot progression using magnetic particle spectroscopy. Med. Phys. 2018, 45, 3258–3263. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Ryu, J.H.; Schellingerhout, D.; Sun, I.-C.; Lee, S.-K.; Jeon, S.; Kim, J.; Kwon, I.C.; Nahrendorf, M.; Ahn, C.-H.; et al. Direct Imaging of Cerebral Thromboemboli Using Computed Tomography and Fibrin-targeted Gold Nanoparticles. Theranostics 2015, 5, 1098–1114. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.-P.; Jeon, S.; Lee, S.-H.; Yoon, H.Y.; Ryu, J.H.; Choi, D.; Kim, J.-Y.; Kim, J.; Park, J.H.; Kim, D.-E.; et al. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging. Biomaterials 2018, 150, 125–136. [Google Scholar] [CrossRef]
- Schumann, P.A.; Christiansen, J.P.; Quigley, R.M.; McCreery, T.P.; Sweitzer, R.H.; Unger, E.C.; Lindner, J.R.; Matsunaga, T.O. Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Investig. Radiol. 2002, 37, 587–593. [Google Scholar] [CrossRef]
- Alonso, A.; Della Martina, A.; Stroick, M.; Fatar, M.; Griebe, M.; Pochon, S.; Schneider, M.; Hennerici, M.; Allémann, E.; Meairs, S. Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound. Stroke 2007, 38, 1508–1514. [Google Scholar] [CrossRef] [Green Version]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Cui, C.; Yang, Z.; Hu, X.; Wu, J.; Shou, K.; Ma, H.; Jian, C.; Zhao, Y.; Qi, B.; Hu, X.; et al. Organic semiconducting nanoparticles as efficient photoacoustic agents for lightening early thrombus and monitoring thrombolysis in living mice. ACS Nano 2017, 11, 3298–3310. [Google Scholar] [CrossRef]
- Licha, C.R.M.; McCurdy, C.M.; Maldonado, S.M.; Lee, L.S. Current management of acute pulmonary embolism. Ann. Thorac. Cardiovasc. Surg. 2020, 26, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, K.B.; Bouchoux, G.; Peng, T.; Klegerman, M.E.; McPherson, D.D.; Holland, C.K. Thrombolytic efficacy and enzymatic activity of rt-PA-loaded echogenic liposomes. J. Thromb. Thrombolysis 2015, 40, 144–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadajkar, A.S.; Santimano, S.; Rahimi, M.; Yuan, B.; Banerjee, S.; Nguyen, K.T. Deep vein thrombosis: Current status and nanotechnology advances. Biotechnol. Adv. 2013, 31, 504–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colasuonno, M.; Palange, A.L.; Aid, R.; Ferreira, M.; Mollica, H.; Palomba, R.; Emdin, M.; Del Sette, M.; Chauvierre, C.; Letourneur, D.; et al. Erythrocyte-Inspired Discoidal Polymeric Nanoconstructs Carrying Tissue Plasminogen Activator for the Enhanced Lysis of Blood Clots. ACS Nano 2018, 12, 12224–12237. [Google Scholar] [CrossRef] [Green Version]
- Jogala, S.; Rachamalla, S.S.; Aukunuru, J. Development of PEG-PLGA based Intravenous Low Molecular Weight Heparin (LMWH) Nanoparticles Intended to Treat Venous Thrombosis. Curr. Drug Deliv. 2016, 13, 698–710. [Google Scholar] [CrossRef]
- Fernandes, E.G.R.; de Queiroz, A.A.A.; Abraham, G.A.; San Román, J. Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J. Mater. Sci. Mater. Med. 2006, 17, 105–111. [Google Scholar] [CrossRef]
- Mukhametova, L.I.; Aisina, R.B.; Zakharyan, E.M.; Karakhanov, E.A.; Gershkovich, K.B.; Varfolomeyev, S.D. Thrombolytic and fibrinogenolytic properties of bioconjugate streptokinase-polyamidoamine dendrimers in vitro. Thromb. Res. 2017, 154, 50–52. [Google Scholar] [CrossRef]
- Wang, X.; Inapagolla, R.; Kannan, S.; Lieh-Lai, M.; Kannan, R.M. Synthesis, characterization, and in vitro activity of dendrimer-streptokinase conjugates. Bioconjug. Chem. 2007, 18, 791–799. [Google Scholar] [CrossRef]
- Tasci, T.O.; Disharoon, D.; Schoeman, R.M.; Rana, K.; Herson, P.S.; Marr, D.W.M.; Neeves, K.B. Enhanced Fibrinolysis with Magnetically Powered Colloidal Microwheels. Small 2017, 13, 1700954. [Google Scholar] [CrossRef]
- Li, C.; Du, H.; Yang, A.; Jiang, S.; Li, Z.; Li, D.; Brash, J.L.; Chen, H. Thrombosis-Responsive Thrombolytic Coating Based on Thrombin-Degradable Tissue Plasminogen Activator (t-PA) Nanocapsules. Adv. Funct. Mater. 2017, 27, 1703934. [Google Scholar] [CrossRef]
- Park, J.; Wen, A.M.; Gao, H.; Shin, M.D.; Simon, D.I.; Wang, Y.; Steinmetz, N.F. Designing S100A9-Targeted Plant Virus Nanoparticles to Target Deep Vein Thrombosis. Biomacromolecules 2021, 22, 2582–2594. [Google Scholar] [CrossRef]
- Hu, J.; Huang, W.; Huang, S.; ZhuGe, Q.; Jin, K.; Zhao, Y. Magnetically active Fe3O4 nanorods loaded with tissue plasminogen activator for enhanced thrombolysis. Nano Res. 2016, 9, 2652–2661. [Google Scholar] [CrossRef]
- Jung, E.; Kang, C.; Lee, J.; Yoo, D.; Hwang, D.W.; Kim, D.; Park, S.-C.; Lim, S.K.; Song, C.; Lee, D. Molecularly Engineered Theranostic Nanoparticles for Thrombosed Vessels: H2O2-Activatable Contrast-Enhanced Photoacoustic Imaging and Antithrombotic Therapy. ACS Nano 2018, 12, 392–401. [Google Scholar] [CrossRef]
- Hu, Q.; Qian, C.; Sun, W.; Wang, J.; Chen, Z.; Bomba, H.N.; Xin, H.; Shen, Q.; Gu, Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. Weinheim 2016, 28, 9573–9580. [Google Scholar] [CrossRef] [Green Version]
- Rumbaut, R.E.; Thiagarajan, P. Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2010; Chapter Arterial, Venous, and Microvascular Hemostasis/Thrombosis; pp. 35–42. [Google Scholar]
- Lippi, G.; Franchini, M.; Targher, G. Arterial thrombus formation in cardiovascular disease. Nat. Rev. Cardiol. 2011, 8, 502–512. [Google Scholar] [CrossRef]
- Jin, J.; Quinton, T.M.; Zhang, J.; Rittenhouse, S.E.; Kunapuli, S.P. Adenosine diphosphate (ADP)-induced thromboxane A2 generation in human platelets requires coordinated signaling through integrin αIIbβ3 and ADP receptors. Blood 2002, 99, 193–198. [Google Scholar] [CrossRef]
- Olie, R.H.; van der Meijden, P.E.J.; Ten Cate, H. The coagulation system in atherothrombosis: Implications for new therapeutic strategies. Res. Pract. Thromb. Haemost. 2018, 2, 188–198. [Google Scholar] [CrossRef]
- Chiarito, M.; Sanz-Sánchez, J.; Cannata, F.; Cao, D.; Sturla, M.; Panico, C.; Godino, C.; Regazzoli, D.; Reimers, B.; De Caterina, R.; et al. Monotherapy with a P2Y12 inhibitor or aspirin for secondary prevention in patients with established atherosclerosis: A systematic review and meta-analysis. Lancet 2020, 395, 1487–1495. [Google Scholar] [CrossRef]
- Condello, F.; Liccardo, G.; Ferrante, G. Clinical Effects of Dual Antiplatelet Therapy or Aspirin Monotherapy after Acute Minor Ischemic Stroke or Transient Ischemic Attack, a Meta-Analysis. Curr. Pharm. Des. 2021, 27, 4140–4146. [Google Scholar] [CrossRef]
- Valgimigli, M.; Gragnano, F.; Branca, M.; Franzone, A.; Baber, U.; Jang, Y.; Kimura, T.; Hahn, J.-Y.; Zhao, Q.; Windecker, S.; et al. P2Y12 inhibitor monotherapy or dual antiplatelet therapy after coronary revascularisation: Individual patient level meta-analysis of randomised controlled trials. BMJ 2021, 373, n1332. [Google Scholar] [CrossRef]
- Mann, K.G.; Butenas, S.; Brummel, K. The dynamics of thrombin formation. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 17–25. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Nie, G. Intelligent antithrombotic nanomedicines: Progress, opportunities, and challenges. VIEW 2021, 2, 20200145. [Google Scholar] [CrossRef]
- 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease—American College of Cardiology. Available online: https://www.acc.org/latest-in-cardiology/ten-points-to-remember/2019/03/07/16/00/2019-acc-aha-guideline-on-primary-prevention-gl-prevention (accessed on 21 February 2022).
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. ESC Scientific Document Group 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. ESC Scientific Document Group 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: The European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline from the american heart association/american stroke association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. ESC Scientific Document Group 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- ESC Guidelines on Acute Myocardial Infarction in Patients Presenting with ST-Segment Elevation (Management of). Available online: https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Acute-Myocardial-Infarction-in-patients-presenting-with-ST-segment-elevation-Ma (accessed on 21 February 2022).
- Capranzano, P.; Angiolillo, D.J. Tackling the gap in platelet inhibition with oral antiplatelet agents in high-risk patients undergoing percutaneous coronary intervention. Expert Rev. Cardiovasc. Ther. 2021, 19, 519–535. [Google Scholar] [CrossRef]
- Feher, G.; Hargroves, D.; Illes, Z.; Klivenyi, P.; Liu, L.; Szapary, L. Editorial: Antiplatelet agents in stroke prevention. Front. Neurol. 2021, 12, 1674. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, L.; Jung, E.; Ko, C.; Seon, S.; Noh, J.; Lee, D. Thrombus targeting aspirin particles for near infrared imaging and on-demand therapy of thrombotic vascular diseases. J. Control. Release 2019, 304, 164–172. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, R.; Yodsanit, N.; Ye, M.; Wang, Y.; Wang, B.; Guo, L.-W.; Kent, K.C.; Gong, S. Hydrogen peroxide-responsive platelet membrane-coated nanoparticles for thrombus therapy. Biomater. Sci. 2021, 9, 2696–2708. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Gwon, S.; Song, C.; Kang, P.M.; Park, S.-C.; Jeon, J.; Hwang, D.W.; Lee, D. Fibrin-Targeted and H2O2-Responsive Nanoparticles as a Theranostics for Thrombosed Vessels. ACS Nano 2017, 11, 6194–6203. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xie, R.; Yodsanit, N.; Ye, M.; Wang, Y.; Gong, S. Biomimetic fibrin-targeted and H2O2-responsive nanocarriers for thrombus therapy. Nano Today 2020, 35, 100986. [Google Scholar] [CrossRef] [PubMed]
- Casa, L.D.C.; Deaton, D.H.; Ku, D.N. Role of high shear rate in thrombosis. J. Vasc. Surg. 2015, 61, 1068–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molloy, C.P.; Yao, Y.; Kammoun, H.; Bonnard, T.; Hoefer, T.; Alt, K.; Tovar-Lopez, F.; Rosengarten, G.; Ramsland, P.A.; van der Meer, A.D.; et al. Shear-sensitive nanocapsule drug release for site-specific inhibition of occlusive thrombus formation. J. Thromb. Haemost. 2017, 15, 972–982. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Li, S.; Liu, K.; Ma, G.; Yan, X. Co-Assembly of Heparin and Polypeptide Hybrid Nanoparticles for Biomimetic Delivery and Anti-Thrombus Therapy. Small 2016, 12, 4719–4725. [Google Scholar] [CrossRef]
- Holme, M.N.; Fedotenko, I.A.; Abegg, D.; Althaus, J.; Babel, L.; Favarger, F.; Reiter, R.; Tanasescu, R.; Zaffalon, P.-L.; Ziegler, A.; et al. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol. 2012, 7, 536–543. [Google Scholar] [CrossRef]
Nanocarriers | Mechanism | Application |
---|---|---|
1 TAP-ligand complex with a polyethylene glycol scaffold (PEG-T1E) [20] |
|
|
TAP-ligand complex with a polyethylene glycol scaffold (PEG-T1E) [25] |
|
|
Iron oxide magnetic nanoparticles which were functionalized with ATP15 and ATP29 [20] |
|
|
Amphiphilic perylene-3,4,9,10-tetracarboxylic diimide derivatives assembled into organic semiconducting nanoparticles (cRGD-PDI) [32] |
|
|
Octofluropropane [34], poly(lactic-co-glycolic acid) (PLGA) nanoparticles [35] and dendrimers [39] loaded with 1 tPA |
|
|
Magnetic nanoparticles wheels loaded with tPA [41] |
|
|
Acrylamide (AAm), N-(3-aminopropyl) methacrylamide hydrochloride (APM) and TAP nanocapsules loaded with tPA [42] |
|
|
Elongated tobacco mosaic virus (TMV) loaded with streptokinase [43] |
|
|
Nanocarriers | Mechanism | Effects |
---|---|---|
IR780-aspirin polyconjugate particles (T-APP) [64] |
|
|
Argatroban-loaded poly vanillyl alcohol-co-oxalate nanoparticle (PNPArg) [65] |
|
|
Fibrin-targeted imaging and anti-thrombotic nanoparticles (FTIAN) [66] |
|
|
H2O2-responsive thrombus-targeting red blood cell (RBC) membrane-cloaked dextran–tirofiban conjugate nanoparticles (T-RBC-DTC NPs) [67] |
|
|
Negatively charged nanoparticles (CNP) [6] |
|
|
Shear stress phosphatidylcholine (PC)-nanoparticles loaded with eptifibatide [69] |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haba, M.Ș.C.; Șerban, D.N.; Șerban, I.L.; Tudorancea, I.M.; Haba, R.M.; Mărănducă, M.A.; Tănase, D.M.; Iliescu, R.; Tudorancea, I. Nanocarrier-Based Management of Venous and Arterial Thrombosis. Crystals 2022, 12, 450. https://doi.org/10.3390/cryst12040450
Haba MȘC, Șerban DN, Șerban IL, Tudorancea IM, Haba RM, Mărănducă MA, Tănase DM, Iliescu R, Tudorancea I. Nanocarrier-Based Management of Venous and Arterial Thrombosis. Crystals. 2022; 12(4):450. https://doi.org/10.3390/cryst12040450
Chicago/Turabian StyleHaba, Mihai Ștefan Cristian, Dragomir N. Șerban, Ionela Lăcrămioara Șerban, Ivona Maria Tudorancea, Raluca Maria Haba, Minela Aida Mărănducă, Daniela Maria Tănase, Radu Iliescu, and Ionuț Tudorancea. 2022. "Nanocarrier-Based Management of Venous and Arterial Thrombosis" Crystals 12, no. 4: 450. https://doi.org/10.3390/cryst12040450
APA StyleHaba, M. Ș. C., Șerban, D. N., Șerban, I. L., Tudorancea, I. M., Haba, R. M., Mărănducă, M. A., Tănase, D. M., Iliescu, R., & Tudorancea, I. (2022). Nanocarrier-Based Management of Venous and Arterial Thrombosis. Crystals, 12(4), 450. https://doi.org/10.3390/cryst12040450