An Evaluation of Nanoparticle Distribution in Solution-Derived YBa2Cu3O7−δ Nanocomposite Thin Films by XPS Depth Profiling in Combination with TEM Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Solution Deposition of the YBCO Nanocomposite Film
2.2. XPS Depth Profiling
2.3. Microstructural Characterization
3. Results and Discussion
3.1. Depth Profiling
3.2. Distribution of SrTiO3 Nanoparticles in the Pyrolyzed YBCO Film
3.3. The Distribution of SrTiO3 Nanoparticles in Crystallized YBCO Films
3.4. The Estimation of the Relative Sputter Rate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obradors, X.; Puig, T. Coated Conductors for Power Applications: Materials Challenges. Supercond. Sci. Technol. 2014, 27, 044003. [Google Scholar] [CrossRef]
- MacManus-Driscoll, J.L.; Wimbush, S.C. Processing and application of high-temperature superconducting coated conductors. Nat. Rev. Mater. 2021, 6, 587–604. [Google Scholar] [CrossRef]
- Puig, T.; Gutiérrez, J.; Pomar, A.; Llordés, A.; Gazquez, J.; Ricart, S.; Sandiumenge, F.; Obradors, X. Vortex Pinning in Chemical Solution Nanostructured YBCO Films. Supercond. Sci. Technol. 2008, 21, 034008. [Google Scholar] [CrossRef]
- Cayado, P.; de Keukeleere, K.; Garzón, A.; Perez-Mirabet, L.; Meledin, A.; de Roo, J.; Vallés, F.; Mundet, B.; Rijckaert, H.; Pollefeyt, G.; et al. Epitaxial YBa2Cu3O7−x Nanocomposite Thin Films from Colloidal Solutions. Supercond. Sci. Technol. 2015, 28, 124007. [Google Scholar] [CrossRef] [Green Version]
- De Keukeleere, K.; Cayado, P.; Meledin, A.; Vallès, F.; de Roo, J.; Rijckaert, H.; Pollefeyt, G.; Bruneel, E.; Palau, A.; Coll, M.; et al. Superconducting YBa2Cu3O7–δ Nanocomposites Using Preformed ZrO2 Nanocrystals: Growth Mechanisms and Vortex Pinning Properties. Adv. Electr. Mater. 2016, 2, 1600161. [Google Scholar] [CrossRef] [Green Version]
- Obradors, X.; Puig, T.; Li, Z.; Pop, C.; Mundet, B.; Chamorro, N.; Vallés, F.; Coll, M.; Ricart, S.; Vallejo, B. Epitaxial YBa2Cu3O7−x nanocomposite films and coated conductors from BaMO3 (M = Zr, Hf) colloidal solutions. Supercond. Sci. Technol 2018, 31, 044001. [Google Scholar] [CrossRef] [Green Version]
- Bretos, I.; Schneller, T.; Falter, M.; Bäcker, M.; Hollmann, E.; Wördenweber, R.; Molina-Luna, L.; van Tendeloo, G.; Eibl, O. Solution-derived YBa2Cu3O7−δ (YBCO) superconducting films with BaZrO3 (BZO) nanodots based on reverse micelle stabilized nanoparticles. J. Mater. Chem. 2015, 3, 3971–3979. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Julian, F.; Ricart, S.; Pomar, A.; Coll, M.; Abellán, P.; Sandiumenge, F.; Casanove, M.-J.; Obradors, X.; Puig, T.; Pastoriza-Santos, I. Chemical Solution Approaches to YBa2Cu3O7−d-Au Nanocomposite Superconducting Thin Films. J. Nanosci. Nanotechnol. 2011, 11, 3245–3255. [Google Scholar] [CrossRef]
- Rijckaert, H.; Pollefeyt, G.; Sieger, M.; Hänisch, J.; Bennewitz, J.; de Keukeleere, K.; de Roo, J.; Hühne, R.; Bäcker, M.; Paturi, P.; et al. Optimizing Nanocomposites through Nanocrystal Surface Chemistry: Superconducting YBa2Cu3O7 Thin Films via Low-Fluorine Metal Organic Deposition and Preformed Metal Oxide Nanocrystals. Chem. Mater. 2017, 29, 6104–6113. [Google Scholar] [CrossRef] [Green Version]
- Diez Sierra, J.; Lopez-Dominguez, P.; Rijckaert, H.; Rikel, M.O.; Hänisch, J.; Khan, M.Z.; Falter, M.; Bennewitz, J.; Huhtinen, H.; Schäfer, S. High Critical Current Density and Enhanced Pinning in Superconducting Films of YBa2Cu3O7−δ Nanocomposites with Embedded BaZrO3, BaHfO3, BaTiO3 and SrZrO3 Nanocrystals. ACS Appl. Nano Mater. 2020, 3, 5542–5553. [Google Scholar] [CrossRef]
- Rijckaert, H.; Cayado, P.; Nast, R.; Diez Sierra, J.; Erbe, M.; López Dominguez, P.; Hänisch, J.; de Buysser, K.; Holzapfel, B.; van Driessche, I. Superconducting HfO2-YBa2Cu3O7−δ Nanocomposite Films Deposited Using Ink-Jet Printing of Colloidal Solutions. Coatings 2020, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Kulawik, K.; Buffat, P.; Kruk, A.; Wusatowska-Sarnek, A.; Czyrska-Filemonowicz, A. Imaging and characterization of γ′ and γ ″nanoparticles in Inconel 718 by EDX elemental mapping and FIB–SEM tomography. Mater. Charact. 2015, 100, 74–80. [Google Scholar] [CrossRef]
- Yurtsever, A.; Weyland, M.; Muller, D.A. Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography. Appl. Phys. Let. 2006, 89, 151920. [Google Scholar] [CrossRef]
- Peeters, D.; Barreca, D.; Carraro, G.; Comini, E.; Gasparotto, A.; Maccato, C.; Sada, C.; Sberveglieri, G. Au/ε-Fe2O3 nanocomposites as selective NO2 gas sensors. J. Phys. Chem. C 2014, 118, 11813–11819. [Google Scholar] [CrossRef]
- Priebe, A.; Barnes, J.-P.; Edwards, T.E.J.; Pethö, L.; Balogh, I.; Michler, J. 3D imaging of nanoparticles in an inorganic matrix using TOF-SIMS validated with STEM and EDX. Anal. Chem. 2019, 91, 11834–11839. [Google Scholar] [CrossRef]
- Rijckaert, H.; De Roo, J.; Van Zele, M.; Banerjee, S.; Huhtinen, H.; Paturi, P.; Bennewitz, J.; Billinge, S.; Bäcker, M.; De Buysser, K. Pair distribution function analysis of ZrO2 nanocrystals and insights in the formation of ZrO2-YBa2Cu3O7 nanocomposites. Materials 2018, 11, 1066. [Google Scholar] [CrossRef] [Green Version]
- Van Zele, M.; Watté, J.; Hasselmeyer, J.; Rijckaert, H.; Vercammen, Y.; Verstuyft, S.; Deduytsche, D.; Debecker, D.; Poleunis, C.; van Driessche, I. Thickness Characterization Toolbox for Transparent Protective Coatings on Polymer Substrates. Materials 2018, 11, 1101. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Starke, U.; Mittemeijer, E. Evaluation of the depth resolutions of Auger electron spectroscopic, X-ray photoelectron spectroscopic and time-of-flight secondary-ion mass spectrometric sputter depth profiling techniques. Thin Solid Film. 2009, 517, 3402–3407. [Google Scholar] [CrossRef]
- Dierick, R.; Capon, B.; Damm, H.; Flamee, S.; Arickx, P.; Bruneel, E.; van Genechten, D.; van Bael, M.; Hardy, A.; Detavernier, C. Annealing of sulfide stabilized colloidal semiconductor nanocrystals. J. Mater. Chem. C 2014, 2, 178–183. [Google Scholar] [CrossRef]
- Fonseca, G.S.; Machado, G.; Teixeira, S.R.; Fecher, G.H.; Morais, J.; Alves, M.C.; Dupont, J. Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids. J. Colloid Interface Sci. 2006, 301, 193–204. [Google Scholar] [CrossRef]
- Wang, N.; Sun, Q.; Bai, R.; Li, X.; Guo, G.; Yu, J. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484–7487. [Google Scholar] [CrossRef] [PubMed]
- Winter, F.; Bezemer, G.L.; van der Spek, C.; Meeldijk, J.D.; van Dillen, A.J.; Geus, J.W.; de Jong, K.P. TEM and XPS studies to reveal the presence of cobalt and palladium particles in the inner core of carbon nanofibers. Carbon 2005, 43, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, S.; Liu, Y.; Jian, W.; Kang, H.; Wang, J. Depth resolution in sputter profiling revisited. Surf. Interface Anal. 2016, 48, 1354–1369. [Google Scholar] [CrossRef]
- Narayanan, V.; de Buysser, K.; Bruneel, E.; Driessche, I.v. X-ray photoelectron spectroscopy (XPS) depth profiling for evaluation of La2Zr2O7 buffer layer capacity. Materials 2012, 5, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanan, V.; Bruneel, E.; Hühne, R.; van Driessche, I. Effects of varied cleaning methods on Ni-5% W substrate for dip-coating of water-based buffer layers: An X-ray photoelectron spectroscopy study. Nanomaterials 2012, 2, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, J.B.; Luo, M.; Shelton, C.K.; Rubner, M.F.; Cohen, R.E.; Epps, T.H., III. Determination of lithium-ion distributions in nanostructured block polymer electrolyte thin films by X-ray photoelectron spectroscopy depth profiling. ACS Nano 2015, 9, 512–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cayado, P.; Rijckaert, H.; Bruneel, E.; Erbe, M.; Hänisch, J.; van Driessche, I.; Holzapfel, B. Importance of the pyrolysis for microstructure and superconducting properties of CSD-grown GdBa2Cu3O7−x-HfO2 nanocomposite films by the ex-situ approach. Sci. Rep. 2020, 10, 19469. [Google Scholar] [CrossRef] [PubMed]
- Santoni, A.; Rondino, F.; Piperno, L.; Angrisani, A.A.; Pinto, V.; Mancini, A.; Augieri, A.; Frolova, A.; Rufoloni, A.; Vannozzi, A. Zirconium distribution in solution-derived BaZrO3-YBa2Cu3O7−δ epitaxial thin films studied by X-ray photoelectron spectroscopy. Thin Solid Films 2019, 669, 531–536. [Google Scholar] [CrossRef]
- Baer, D.R.; Engelhard, M.H.; Lea, A.S.; Nachimuthu, P.; Droubay, T.C.; Kim, J.; Lee, B.; Mathews, C.; Opila, R.; Saraf, L.V. Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2. J. Vac. Sci. Technol. A 2010, 28, 1060–1072. [Google Scholar] [CrossRef]
- De Keukeleere, K.; de Roo, J.; Lommens, P.; Martins, J.C.; van der Voort, P.; van Driessche, I. Fast and Tunable Synthesis of ZrO2 Nanocrystals: Mechanistic Insights into Precursor Dependence. Inorg. Chem. 2015, 54, 3469–3476. [Google Scholar] [CrossRef] [Green Version]
- Rijckaert, H.; Hänisch, J.; Pollefeyt, G.; Bäcker, M.; van Driessche, I. Influence of Ba2+ Consumption and Intermediate Dwelling during Processing of YBa2Cu3O7 Nanocomposite Films. J. Am. Ceram. Soc. 2019, 102, 3870–3878. [Google Scholar] [CrossRef]
- Hofmann, S. Summary of ISO/TC 201 Technical Report: ISO/TR 15969: 2000—Surface chemical analysis—Depth profiling—Measurement of sputtered depth. Surf. Interf. Anal. 2002, 33, 453–454. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruneel, E.; Rijckaert, H.; Diez Sierra, J.; De Buysser, K.; Van Driessche, I. An Evaluation of Nanoparticle Distribution in Solution-Derived YBa2Cu3O7−δ Nanocomposite Thin Films by XPS Depth Profiling in Combination with TEM Analysis. Crystals 2022, 12, 410. https://doi.org/10.3390/cryst12030410
Bruneel E, Rijckaert H, Diez Sierra J, De Buysser K, Van Driessche I. An Evaluation of Nanoparticle Distribution in Solution-Derived YBa2Cu3O7−δ Nanocomposite Thin Films by XPS Depth Profiling in Combination with TEM Analysis. Crystals. 2022; 12(3):410. https://doi.org/10.3390/cryst12030410
Chicago/Turabian StyleBruneel, Els, Hannes Rijckaert, Javier Diez Sierra, Klaartje De Buysser, and Isabel Van Driessche. 2022. "An Evaluation of Nanoparticle Distribution in Solution-Derived YBa2Cu3O7−δ Nanocomposite Thin Films by XPS Depth Profiling in Combination with TEM Analysis" Crystals 12, no. 3: 410. https://doi.org/10.3390/cryst12030410
APA StyleBruneel, E., Rijckaert, H., Diez Sierra, J., De Buysser, K., & Van Driessche, I. (2022). An Evaluation of Nanoparticle Distribution in Solution-Derived YBa2Cu3O7−δ Nanocomposite Thin Films by XPS Depth Profiling in Combination with TEM Analysis. Crystals, 12(3), 410. https://doi.org/10.3390/cryst12030410