Synthesis, Crystal Structure, and Hirshfeld Surface Analysis of Hexachloroplatinate and Tetraclorouranylate of 3-Carboxypyridinium—Halogen Bonds and π-Interactions vs. Hydrogen Bonds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Complexes bis(3-pyridinecarboxylic Acid) Hexachloroplatinate, (HNic)2[PtCl6] (I)
2.3. Synthesis of Complexes bis(3-pyridinecarboxylic Acid) Uranile Tetrachloride, (HNic)2[UO2Cl4] (II)
2.4. Powder XRD Analysis
2.5. Single-Crystal XRD Analysis
3. Results and Discussion
3.1. Structural Description
3.2. Hirshfeld Surface Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicotinic Acid | C5H4NCOOH–PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Nicotinic-acid (accessed on 29 January 2022).
- Mahmudov, K.T.; Kopylovich, M.N.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Non-covalent interactions in the synthesis of coordination compounds: Recent advances. Coord. Chem. Rev. 2017, 345, 54–72. [Google Scholar] [CrossRef]
- Lucas, X.; Bauzá, A.; Frontera, A.; Quiñonero, D. A thorough anion–π interaction study in biomolecules: On the importance of cooperativity effects. Chem. Sci. 2016, 7, 1038–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Chan, M.C.W.; Zhu, N.; Che, C.M.; He, Z.; Wong, K.Y. Structural Basis for Vapoluminescent Organoplatinum Materials Derived from Noncovalent Interactions as Recognition Components. Chem. A Eur. J. 2003, 9, 6155–6166. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.R.; Wang, Y.; Cui, P.F.; Xing, L.; Lee, J.; Kim, D.; Jiang, H.L.; Oh, Y.K. Applications of π-π stacking interactions in the design of drug-delivery systems. J. Control. Release 2019, 294, 311–326. [Google Scholar] [CrossRef]
- Dudenko, D.V.; Yates, J.R.; Harris, K.D.M.; Brown, S.P. An NMR crystallography DFT-D approach to analyse the role of intermolecular hydrogen bonding and π–π interactions in driving cocrystallisation of indomethacin and nicotinamide. CrystEngComm 2013, 15, 8797–8807. [Google Scholar] [CrossRef]
- Svenson, J.; Karlsson, J.G.; Nicholls, I.A. 1H Nuclear magnetic resonance study of the molecular imprinting of (−)-nicotine: Template self-association, a molecular basis for cooperative ligand binding. J. Chromatogr. A 2004, 1024, 39–44. [Google Scholar] [CrossRef]
- Gokula, R.P.; Mahato, J.; Tripathi, A.; Singh, H.B.; Chowdhury, A. Self-Assembly of Nicotinic Acid-Conjugated Selenopeptides into Mesotubes. ACS Appl. Bio. Mater. 2021, 4, 1912–1919. [Google Scholar] [CrossRef]
- Trzesowska-Kruszynska, A. On construction of lead coordination polymers derived from N′-(2-hydroxybenzylidene)nicotinohydrazide via covalent and non-covalent interactions. J. Coord. Chem. 2014, 67, 120–135. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, K.; Fang, Q.R.; Xu, J.Q.; Yu, J.H.; Zhang, X.; Bie, H.Y.; Wang, T.G. Synthesis and characterization of four novel supramolecular compounds based on metal zinc and cadmium. Cryst. Growth Des. 2005, 5, 1091–1098. [Google Scholar] [CrossRef]
- Gianneschi, N.C.; Tiekink, E.R.T.; Rendina, L.M. Dinuclear platinum complexes with hydrogen-bonding functionality: Noncovalent assembly of nanoscale cyclic arrays. J. Am. Chem. Soc. 2000, 122, 8474–8479. [Google Scholar] [CrossRef]
- Pahade, P.; Katolkar, P. A systematic review on metal complexes of some medicinal compounds. Int. J. Appl. Adv. Sci. Res. 2020, 5, 9–21. [Google Scholar] [CrossRef]
- Fong, C.W. Platinum anti-cancer drugs: Free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect. Free Radic. Biol. Med. 2016, 95, 216–229. [Google Scholar] [CrossRef]
- Cohen, G.L.; Ledner, J.A.; Bauer, W.R.; Ushay, H.M.; Caravana, C.; Lippard, S.J. Sequence dependent binding of cis-dichlorodiammineplatinum(II) to DNA. J. Am. Chem. Soc. 1980, 102, 2487–2488. [Google Scholar] [CrossRef]
- Crisp, M.G.; Pyke, S.M.; Rendina, L.M. Dinuclear organoplatinum(II)-methyldiphenylphosphine complexes of nicotinic acid. J. Organomet. Chem. 2000, 607, 222–226. [Google Scholar] [CrossRef]
- Fedorov, B.S.; Fadeev, M.A.; Kozub, G.I.; Aldoshin, S.M.; Aliev, Z.G.; Atovmyan, L.O.; Konovalova, N.P.; Sashenkova, T.E.; Kondrat’Eva, T.A.; Blokhina, S.V. Synthesis and antimetastatic activity of metal complexes based on substituted pyridinecarboxylic acid amides and platinum tetrachloride. Pharm. Chem. J. 2009, 43, 134–138. [Google Scholar] [CrossRef]
- Durbin, P.W.; Kullgren, B.; Ebbe, S.N.; Xu, J.; Raymond, K.N. Chelating agents for uranium(vi): 2. Efficacy and toxicity of tetradentate catecholate and hydroxypyridinonate ligands in mice. Health Phys. 2000, 78, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Safonov, A.V.; Perepelov, A.V.; Babich, T.L.; Popova, N.M.; Grouzdev, D.S.; Filatov, A.V.; Shashkov, A.S.; Demina, L.I.; Nazina, T.N. Structure and gene cluster of the O-polysaccharide from Pseudomonas veronii A-6-5 and its uranium bonding. Int. J. Biol. Macromol. 2020, 165, 2197–2204. [Google Scholar] [CrossRef] [PubMed]
- Raditzky, B.; Schmeide, K.; Sachs, S.; Geipel, G.; Bernhard, G. Interaction of uranium(VI) with nitrogen containing model ligands studied by laser-induced fluorescence spectroscopy. Polyhedron 2010, 29, 620–626. [Google Scholar] [CrossRef]
- Joseph, C.; Raditzky, B.; Schmeide, K.; Geipel, G.; Bernhard, G. Complexation of uranium by sulfur and nitrogen containing model ligands in aqueous solution. Uranium Min. Hydrogeol. 2008, 2008, 539–548. [Google Scholar] [CrossRef]
- Thuéry, P.; Harrowfield, J. Recent advances in structural studies of heterometallic uranyl-containing coordination polymers and polynuclear closed species. Dalt. Trans. 2017, 46, 13660–13667. [Google Scholar] [CrossRef]
- Fortier, S.; Hayton, T.W. Oxo ligand functionalization in the uranyl ion (UO22+). Coord. Chem. Rev. 2010, 254, 197–214. [Google Scholar] [CrossRef]
- Kannan, S.; Kumar, M.; Sadhu, B.; Jaccob, M.; Sundararajan, M. Unusual intramolecular CH⋯O hydrogen bonding interaction between a sterically bulky amide and uranyl oxygen. Dalt. Trans. 2017, 46, 16939–16946. [Google Scholar] [CrossRef] [PubMed]
- Carter, K.P.; Kalaj, M.; Cahill, C.L. Harnessing uranyl oxo atoms via halogen bonding interactions in molecular uranyl materials featuring 2,5-diiodobenzoic acid and N-donor capping ligands. Inorg. Chem. Front. 2017, 4, 65–78. [Google Scholar] [CrossRef]
- Andrews, M.B.; Cahill, C.L. Utilizing hydrogen bonds and halogen–halogen interactions in the design of uranyl hybrid materials. Dalt. Trans. 2012, 41, 3911–3914. [Google Scholar] [CrossRef]
- Natrajan, L.S. Developments in the photophysics and photochemistry of actinide ions and their coordination compounds. Coord. Chem. Rev. 2012, 256, 1583–1603. [Google Scholar] [CrossRef]
- Baldoví, J.J.; Cardona-Serra, S.; Clemente-Juan, J.M.; Coronado, E.; Gaita-Ariño, A. Modeling the properties of uranium-based single ion magnets. Chem. Sci. 2013, 4, 938–946. [Google Scholar] [CrossRef]
- Fox, A.R.; Bart, S.C.; Meyer, K.; Cummins, C.C. Towards uranium catalysts. Nature 2008, 455, 341–349. [Google Scholar] [CrossRef]
- Arnold, P.L. Uranium-mediated activation of small molecules. Chem. Commun. 2011, 47, 9005–9010. [Google Scholar] [CrossRef] [Green Version]
- SAINT-Plus; Version 7.68; Shuker AXS Inc.: Madison, WI, USA, 2012.
- Sheldrick, G.M. SADABS; Bruker AXS: Madison, WI, USA, 2008. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yin, C.; Chen, P.; Zhang, M.; Parkin, S.; Zhou, P.; Li, T.; Yu, F.; Long, S. sp2CH⋯Cl hydrogen bond in the conformational polymorphism of 4-chloro-phenylanthranilic acid. CrystEngComm 2017, 19, 4345–4354. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Evans, T.A.; Seddon, K.R.; Pálinkó, I. The C–H···Cl hydrogen bond: Does it exist? New J. Chem. 1999, 23, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Novikov, A.P.; Ryagin, S.N.; Grigoriev, M.S.; Safonov, A.V.; German, K.E. 5,5-Dichloro-6-hydroxydihydropyrimidine-2,4(1H,3H)-dione: Molecular and crystal structure, Hirshfeld surface analysis and the new route for synthesis with Mg(ReO4)2 as a new catalyst. Acta Crystallogr. Sect. E Crystallogr. Commun. 2020, 76, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Gel’mbol’dt, V.O.; Minacheva, L.K.; Ganin, E.V.; Sergienko, V.S. Crystal structure of bis(3-carboxypyridinium) hexafluorosilicate. Russ. J. Inorg. Chem. 2008, 53, 875–878. [Google Scholar] [CrossRef]
- Macazaga, M.J.; Rodríguez, J.; Quiroga, A.G.; Peregina, S.; Carnero, A.; Navarro-Ranninger, C.; Medina, R.M. Platinum(IV) complexes of 3- and 4-picolinic acids containing ammine or isopropylamine ligands—Synthesis, characterization, x-ray structures, and evaluation of their cytotoxic activity against cancer cell lines. Eur. J. Inorg. Chem. 2008, 2008, 4762–4769. [Google Scholar] [CrossRef]
- Medina, R.M.; Rodríguez, J.; Quiroga, A.G.; Ramos-Lima, F.J.; Moneo, V.; Carnero, A.; Navarro-Ranninger, C.; Macazaga, M.J. Influence of (Hydroxymethyl)pyridine and Pyridine-carboxylic Acids, in trans-Position to the Isopropylamine and Ammine Ligands, on the Cytotoxicity of Platinum Complexes. Chem. Biodivers. 2008, 5, 2090–2100. [Google Scholar] [CrossRef]
- Mit’kovskaya, E.V.; Mikhailov, Y.N.; Gorbunova, Y.; Serezhkina, L.; Serezhkin, V. X-ray diffraction study of [UO2SO4{NH 2CON(CH3)2}2]. Russ. J. Inorg. Chem. 2004, 49, 1923–1927. [Google Scholar]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Piña, J.J.; Gil, D.M.; Pérez, H. Revealing new non-covalent interactions in polymorphs and hydrates of Acyclovir: Hirshfeld surface analysis, NCI plots and energetic calculations. Comput. Theor. Chem. 2021, 1197, 113133. [Google Scholar] [CrossRef]
- Marek, P.H.; Urban, M.; Madura, I.D. The study of interactions with a halogen atom: Influence of NH2 group insertion on the crystal structures of meta-bromonitrobenzene derivatives. Acta Crystallogr. Sect. C Struct. Chem. 2018, 74, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Novikov, A.P.; Bezdomnikov, A.A.; Grigoriev, M.S.; German, K.E. Synthesis, crystal structure and Hirshfeld surface analysis of 2-(perfluorophenyl)acetamide in comparison with some related compounds. Acta Crystallogr. Sect. E Crystallogr. Commun. 2022, 78, 80–83. [Google Scholar] [CrossRef]
- Psycharis, V.; Dermitzaki, D.; Raptopoulou, C.P. The Use of Hirshfeld Surface Analysis Tools to Study the Intermolecular Interactions in Single Molecule Magnets. Crystals 2021, 11, 1246. [Google Scholar] [CrossRef]
- Tan, S.L.; Jotani, M.M.; Tiekink, E.R.T. Utilizing Hirshfeld surface calculations, non-covalent inter-action (NCI) plots and the calculation of inter-action energies in the analysis of mol-ecular packing. Acta Crystallogr. Sect. E Crystallogr. Commun. 2019, 75, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Novikov, A.P.; Volkov, M.A.; Safonov, A.V.; Grigoriev, M.S.; Abkhalimov, E.V. Synthesis and Characterization of New Guanine Complexes of Pt(IV) and Pd(II) by X-Ray Diffraction and Hirshfeld Surface Analysis. Crystals 2021, 11, 1417. [Google Scholar] [CrossRef]
- Savastano, M.; García, C.; López de la Torre, M.D.; Pichierri, F.; Bazzicalupi, C.; Bianchi, A.; Melguizo, M. Interplay between salt bridge, hydrogen bond and anion-π interactions in thiocyanate binding. Inorganica Chim. Acta 2018, 470, 133–138. [Google Scholar] [CrossRef]
- Howard, J.A.K.; Hoy, V.J.; O’Hagan, D.; Smith, G.T. How good is fluorine as a hydrogen bond acceptor? Tetrahedron 1996, 52, 12613–12622. [Google Scholar] [CrossRef]
I | II | ||
---|---|---|---|
Empirical formula | C12H12N2O4Cl6Pt | C12H12N2O4Cl6Pt | C12H12N2O6Cl4U |
Formula weight | 656.03 | 656.03 | 660.07 |
Temperature/K | 296(2) | 100(2) | 100(2) |
Crystal system | monoclinic | monoclinic | monoclinic |
Space group | P21/n | P21/n | P21/n |
a/Å | 9.0534(3) | 8.9552(14) | 6.6653(2) |
b/Å | 9.4852(3) | 9.4270(16) | 18.4856(5) |
c/Å | 11.9423(3) | 11.8579(19) | 7.4266(2) |
α/° | 90 | 90 | 90 |
β/° | 110.521(1) | 110.400(8) | 95.0330(10) |
γ/° | 90 | 90 | 90 |
Volume/Å3 | 960.45(5) | 938.3(3) | 911.52(4) |
Z | 2 | 2 | 2 |
Z’ | 0.5 | 0.5 | 0.5 |
ρcalcg/cm3 | 2.268 | 2.322 | 2.405 |
μ/mm−1 | 8.159 | 8.352 | 9.521 |
F(000) | 620.0 | 620.0 | 612.0 |
Crystal size/mm3 | 0.2 × 0.18 × 0.1 | 0.32 × 0.12 × 0.1 | 0.16 × 0.14 × 0.06 |
Radiation | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
2Θ range for data collection/° | 8.194 to 59.998 | 8.44 to 59.988 | 8.182 to 70 |
Index ranges | −11 ≤ h ≤ 12, −12 ≤ k ≤ 13, −16 ≤ l ≤ 16 | −12 ≤ h ≤ 12, −13 ≤ k ≤ 13, −16 ≤ l ≤ 16 | −8 ≤ h ≤ 10, −29 ≤ k ≤ 29, −11 ≤ l ≤ 11 |
Reflections collected | 10,006 | 14,377 | 18,010 |
Independent reflections | 2794 [Rint = 0.0205, Rsigma = 0.0201] | 2735 [Rint = 0.0559, Rsigma = 0.0416] | 4002 [Rint = 0.0283, Rsigma = 0.0253] |
Data/restraints/parameters | 2794/2/122 | 2735/2/121 | 4002/0/115 |
Goodness-of-fit on F2 | 1.048 | 1.030 | 1.284 |
Final R indexes [I >= 2σ (I)] | R1 = 0.0160, wR2 = 0.0372 | R1 = 0.0235, wR2 = 0.0529 | R1 = 0.0310, wR2 = 0.0546 |
Final R indexes [all data] | R1 = 0.0234, wR2 = 0.0404 | R1 = 0.0323, wR2 = 0.0568 | R1 = 0.0398, wR2 = 0.0562 |
Largest diff. peak/hole/e Å-3 | 0.78/−0.69 | 0.82/−1.21 | 1.47/−2.32 |
100 K | 296 K | ||||
---|---|---|---|---|---|
Pt1—Cl1 | 2.3180(8) | Cl2—Pt1—Cl3 | 90.89(3) | Pt1—Cl1 | 2.3220(6) |
Pt1—Cl2 | 2.3090(8) | Cl2—Pt1—Cl1 | 89.06(3) | Pt1—Cl3 | 2.3139(5) |
Pt1—Cl3 | 2.3107(8) | Cl3—Pt1—Cl1 | 90.43(3) | Pt1—Cl2 | 2.3144(5) |
U1—O1 | 1.780(2) | O1—U1—Cl1 | 89.81(8) |
---|---|---|---|
U1—Cl1 | 2.6461(8) | O1—U1—Cl2 | 89.86(8) |
U1—Cl2 | 2.6694(7) | O1—U1—Cl1 | 89.81(8) |
D—H···A | D—H | H···A | D···A | D—H···A |
---|---|---|---|---|
O2—H2B···Cl1 i | 0.85(2) | 2.70(5) | 3.486(3) | 155(10) |
O2—H2B···Cl3 i | 0.85(2) | 2.79(8) | 3.401(3) | 131(9) |
O2—H2C···Cl3 ii | 0.86(2) | 2.61(4) | 3.413(3) | 155(8) |
N1—H1A···O1 iii | 0.88 | 1.87 | 2.728(4) | 163.0 |
C2—H2A···Cl1 iv | 0.95 | 2.66 | 3.500(3) | 148.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
---|---|---|---|---|
O3—H3···O1 | 0.857(3) | 2.287(2) | 3.125(3) | 165.7(2) |
N1—H1A···Cl2 i | 0.88 | 2.81 | 3.380(3) | 123.9 |
N1—H1A···O2 ii | 0.88 | 2.00 | 2.721(3) | 138.3 |
C2—H2A···Cl2 iii | 0.95 | 2.69 | 3.611(3) | 163.4 |
C5—H5A···Cl2 iv | 0.95 | 2.82 | 3.543(3) | 133.8 |
C6—H6A···Cl1 v | 0.95 | 2.67 | 3.411(3) | 135.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novikov, A.P.; Volkov, M.A.; Safonov, A.V.; Grigoriev, M.S. Synthesis, Crystal Structure, and Hirshfeld Surface Analysis of Hexachloroplatinate and Tetraclorouranylate of 3-Carboxypyridinium—Halogen Bonds and π-Interactions vs. Hydrogen Bonds. Crystals 2022, 12, 271. https://doi.org/10.3390/cryst12020271
Novikov AP, Volkov MA, Safonov AV, Grigoriev MS. Synthesis, Crystal Structure, and Hirshfeld Surface Analysis of Hexachloroplatinate and Tetraclorouranylate of 3-Carboxypyridinium—Halogen Bonds and π-Interactions vs. Hydrogen Bonds. Crystals. 2022; 12(2):271. https://doi.org/10.3390/cryst12020271
Chicago/Turabian StyleNovikov, Anton Petrovich, Mikhail Alexandrovich Volkov, Alexey Vladimirovich Safonov, and Mikhail Semenovich Grigoriev. 2022. "Synthesis, Crystal Structure, and Hirshfeld Surface Analysis of Hexachloroplatinate and Tetraclorouranylate of 3-Carboxypyridinium—Halogen Bonds and π-Interactions vs. Hydrogen Bonds" Crystals 12, no. 2: 271. https://doi.org/10.3390/cryst12020271
APA StyleNovikov, A. P., Volkov, M. A., Safonov, A. V., & Grigoriev, M. S. (2022). Synthesis, Crystal Structure, and Hirshfeld Surface Analysis of Hexachloroplatinate and Tetraclorouranylate of 3-Carboxypyridinium—Halogen Bonds and π-Interactions vs. Hydrogen Bonds. Crystals, 12(2), 271. https://doi.org/10.3390/cryst12020271