Remediation of Cd (II) Ion from an Aqueous Solution by a Starch-Based Activated Carbon: Experimental and Density Functional Theory (DFT) Approach
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Adsorbent
2.3. Adsorption Experiment
3. Results and Discussion
3.1. Material Characterization
3.1.1. SEM and TEM Analysis
3.1.2. AFM Analysis
3.1.3. FT-IR Analysis
3.1.4. TGA Study
3.1.5. Zeta Potential and Zeta Sizer Analysis
3.1.6. BET and BJH Analysis
3.2. Adsorption Experiments
3.2.1. Effect of pH on Sorption
3.2.2. Influence of the AC Dose
3.2.3. Influence of Shaking Time
3.2.4. Effect of Cd (II) Ion Solution Concentration
4. The Thermodynamic Study
5. DFT Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, Z.; Ahmad, R.; Khan, A. Functionalized nanospheres for efficient sequestration of cadmium ions. RSC Adv. 2014, 4, 50056–50063. [Google Scholar] [CrossRef]
- Hasany, S.M.; Ahmad, R. The potential of cost-effective coconut husk for the removal of toxic metal ions for environmen-tal protection. J. Environ. Manage. 2006, 81, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Fiberg, L.; Nordberg, G.; Vouk, V. Handbook of the Toxicology of Metals; Elsevier: New York, NY, USA, 1986; Volume 2. [Google Scholar]
- Peña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; López, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. J. Environ. Manag. 2019, 237, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Teodosiu, C.; Gilca, A.-F.; Barjoveanu, G.; Fiore, S. Emerging pollutants removal through advanced drinking water treat-ment: A review on processes and environmental performances assessment. J. Clean. Prod. 2018, 197, 1210–1221. [Google Scholar] [CrossRef]
- Wen, X.; Wu, P.; Xu, K.; Wang, J.; Hou, X. On-line precipitation–dissolution in knotted reactor for thermospray flame fur-nace AAS for determination of ultratrace cadmium. Microchem. J. 2009, 91, 193–196. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V. Measurement of the 2 ν β β decay half-life and search for the 0 ν β β decay of Cd 116 with the NEMO-3 detector. Phys. Rev. D. 2017, 95, 012007. [Google Scholar] [CrossRef] [Green Version]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.C.; Wu, P.; Zhang, X.; Hou, X.; Jones, B.T. Determination of Cadmium in Biological Samples. Appl. Spectrosc. Rev. 2006, 41, 35–75. [Google Scholar] [CrossRef]
- Wen, X.; Yang, Q.; Yan, Z.; Deng, Q. Determination of cadmium and copper in water and food samples by dispersive liquid–liquid microextraction combined with UV–vis spectrophotometry. Microchem. J. 2011, 97, 249–254. [Google Scholar] [CrossRef]
- Ma, W.; Song, X.; Pan, Y.; Cheng, Z.; Xin, G.; Wang, B.; Wang, X. Adsorption behavior of crystal violet onto opal and reuse feasibility of opal-dye sludge for binding heavy metals from aqueous solutions. Chem. Eng. J. 2012, 193–194, 381–390. [Google Scholar] [CrossRef]
- Waalkes, M.P.; Rehm, S.; Riggs, C.W.; Bare, R.M.; DeVor, D.E.; Poirier, L.A.; Wenk, M.L.; Henneman, J.R.; Balaschak, M.S. Cadmium carcinogenesis in male Wistar [Crl:(WI)BR] rats: Dose-response analysis of tumor induction in the prostate and testes and at the injection site. Cancer Res. 1988, 48, 4656–4663. [Google Scholar] [PubMed]
- Seidal, K.; Jorgensen, N.; Elinder, C.; Sjögren, B.; Vahter, M. Fatal cadmium-induced pneumonitis. Scand. J. Work. Environ. Health 1993, 19, 429–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Gao, P.; Cui, J.; Zhang, F.; Wang, F.; Cheng, J. Preparation and Cr (VI) removal performance of corncob activated carbon. Environ. Sci. Pollut. Res. 2018, 25, 20743–20755. [Google Scholar] [CrossRef] [PubMed]
- Fuertes, A.B.; Valle-Vigón, P.; Sevilla, M. One-step synthesis of silica@ resorcinol–formaldehyde spheres and their applica-tion for the fabrication of polymer and carbon capsules. Chem. Commun. 2012, 48, 6124–6126. [Google Scholar] [CrossRef] [Green Version]
- Lo, K.-H.; Lu, C.-W.; Lin, W.-H.; Chien, C.-C.; Chen, S.-C.; Kao, C.-M. Enhanced reductive dechlorination of trichloroe-thene with immobilized Clostridium butyricum in silica gel. Chemosphere 2020, 238, 124596. [Google Scholar] [CrossRef]
- Chung, K.-T. The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes. Mutat. Res. Rev. Genet. Toxicology. 1983, 114, 269–281. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef]
- Khan, A.A.; Esrafili, M.D.; Ahmad, A.; Hull, E.; Ahmad, R.; Jan, S.U.; Ahmad, I. A computational study on the characteris-tics of open-shell H-bonding interaction between carbamic acid (NH2COOH) and HO2, HOS or HSO radicals. J. Mol. Model. 2019, 25, 189. [Google Scholar] [CrossRef]
- Allen, N.; Dai, C.; Hu, Y.; Kubicki, J.D.; Kabengi, N. Adsorption Study of Al3+, Cr3+, and Mn2+ onto Quartz and Corun-dum using Flow Microcalorimetry, Quartz Crystal Microbalance, and Density Functional Theory. ACS Earth Space Chem. 2019, 3, 432–441. [Google Scholar] [CrossRef]
- Acelas, N.Y.; Flórez, E. Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect. J. Physics: Conf. Ser. 2019, 1247, 012051. [Google Scholar] [CrossRef]
- Yang, R.T. Adsorbents: Fundamentals and Applications; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2003. [Google Scholar]
- Tayone, J. Spectrophotometric determination of chromium (VI) in canned fruit juices. Int. J. Sci. Basic Appl. Researchm. 2015, 19, 426–432. [Google Scholar]
- Shirazani, M.T.; Bakhshi, H.; Rashidi, A.; Taghizadeh, M. Starch-based activated carbon micro-spheres for adsorption of methane with superior performance in ANG technology. J. Environ. Chem. Eng. 2020, 8, 103910. [Google Scholar] [CrossRef]
- Yang, K.; Pan, T.; Zhao, Q.; Chen, C.; Zhu, X.; Wang, P.; Chen, B. Dual-function ultrafiltration membrane constructed from pure activated carbon particles via facile nanostructure reconstruction for high-efficient water purification. Carbon 2020, 168, 254–263. [Google Scholar] [CrossRef]
- Tyagi, A.; Banerjee, S.; Singh, S.; Kar, K.K. Biowaste derived activated carbon electrocatalyst for oxygen reduction reac-tion: Effect of chemical activation. Int. J. Hydrog. Energy 2020, 45, 16930–16943. [Google Scholar] [CrossRef]
- Singh, G.; Dwivedi, S. Decolorization and degradation of Direct Blue-1 (Azo dye) by newly isolated fungus Aspergillus terreus GS28, from sludge of carpet industry. Environ. Technol. Innov. 2020, 18, 100751. [Google Scholar] [CrossRef]
- Karim, S.A.; Al-Gubury, H.Y.; Alrazzak, N.A. The Synthesis of a Novel Azo Dyes and Study of Photocatalytic Degradation. J. Phys. Conf. Ser. 2019, 1294, 052054. [Google Scholar] [CrossRef]
- Banerjee, M.; Basu, R.K.; Das, S.K. Cu (II) removal using green adsorbents: Kinetic modeling and plant scale-up design. Environ. Sci. Pollut. Res. 2019, 26, 11542–11557. [Google Scholar] [CrossRef]
- Maleki, B.; Reiser, O.; Esmaeilnezhad, E.; Choi, H.J. SO3H-dendrimer functionalized magnetic nanoparticles (Fe3O4@DNH (CH2)4SO3H): Synthesis, characterization and its application as a novel and heterogeneous catalyst for the one-pot syn-thesis of polyfunctionalized pyrans and polyhydroquinolines. Polyhedron 2019, 162, 129–141. [Google Scholar] [CrossRef]
- Rafatullah, M.; Ismail, S.; Ahmad, A. Optimization Study for the Desorption of Methylene Blue Dye from Clay Based Adsorbent Coating. Water 2019, 11, 1304. [Google Scholar]
- Naushad, M.; Alqadami, A.A.; AlOthman, Z.A.; Alsohaimi, I.H.; Algamdi, M.S.; Aldawsari, A.M. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated car-bon. J. Mol. Liquids. 2019, 293, 111442. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, L.; Ma, A.; Xia, H.; Peng, J.; Li, C.; Shu, J. Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater. J. Environ. Sci. 2018, 65, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, S.; Toyohara, Y.; Saha, G.C.; Awual, R.; Kuba, T. Development of synthetic zeolites from bio-slag for cesium adsorption: Kinetic, isotherm and thermodynamic studies. J. Water Process Eng. 2020, 33, 101055. [Google Scholar] [CrossRef]
- Sharma, G.; Naushad, M. Adsorptive removal of noxious cadmium ions from aqueous medium using activated car-bon/zirconium oxide composite: Isotherm and kinetic modelling. J. Mol. Liq. 2020, 310, 113025. [Google Scholar] [CrossRef]
- Yuh-Shan, H. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 2004, 59, 171–177. [Google Scholar] [CrossRef]
- Ho, Y.-S.; McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Brito, S.M.d.; Cordeiro, J.L.C.; Ramalho, L.d.; Oliveira, J.F.R. Eriochrome black adsorption on yellow passion fruit peel (Passiflora edulis f. Flavicarpa) treated with sodium hydroxide and nitric acid: Study of adsorption isotherms, kinetic models and thermodynamic parameters. SN Appl. Sci. 2019, 1, 1226. [Google Scholar] [CrossRef] [Green Version]
- Kazeem, T.S.; Zubair, M.; Daud, M.; Mu’azu, N.D.; Al-Harthi, M.A. Graphene/ternary layered double hydroxide compo-sites: Efficient removal of anionic dye from aqueous phase. Korean J. Chem. Eng. 2019, 36, 1057–1068. [Google Scholar] [CrossRef]
- Kim, D.-W.; Wee, J.-H.; Yang, C.-M.; Yang, K.S. Efficient removals of Hg and Cd in aqueous solution through NaOH-modified activated carbon fiber. Chem. Eng. J. 2020, 392, 123768. [Google Scholar] [CrossRef]
- Jan, S.U.; Ahmad, A.; Khan, A.A.; Melhi, S.; Ahmad, I.; Sun, G.; Chen, C.-M.; Ahmad, R. Removal of azo dye from aqueous solution by a low-cost activated carbon prepared from coal: Adsorption kinetics, isotherms study, and DFT simulation. Environ. Sci. Pollut. Res. 2021, 28, 10234–10247. [Google Scholar] [CrossRef]
- Desta, M.B. Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) agricultural waste. J. Thermodyn. 2013, 2013, 375830. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, Y.-J. Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 2008, 61, 229–242. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, J.; Jin, Q.; Li, Z.; Zhang, X.; Chen, Y.; Zhang, S.; Chen, H. Sludge-based biochar activation to enhance Pb(II) adsorption. Fuel 2019, 252, 101–108. [Google Scholar] [CrossRef]
- Fajarwati, F.I.; Anugrahwati, M.; Yanti, I.; Safitri, R.A.; Yeni; Yuanita, E. Adsorption Study of Methylene Blue and Eriochrome Black T Dyes on Activated Carbon and Magnetic Carbon Composite. IOP Conf. Ser. Mater. Sci. Eng. 2019, 599, 012025. [Google Scholar] [CrossRef]
- Alkherraz, A.M.; Ali, A.K.; Elsherif, K.M. Removal of Pb (II), Zn (II), Cu (II) and Cd (II) from aqueous solutions by ad-sorption onto olive branches activated carbon: Equilibrium and thermodynamic studies. Chem. Int. 2020, 6, 11–20. [Google Scholar]
- Ahmad, R.; Saeed, M.M.; Ali, A.; Zaidi, J.H. Removal of Tm(III) ions from aqueous solution using PAN-incorporated sol–gel matrices. Radiochim. Acta 2007, 95, 451–457. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H. Equilibrium, thermodynamics and mechanisms of Ni2+ biosorption by aerobic granules. Biochem. Eng. J. 2007, 35, 174–182. [Google Scholar] [CrossRef]
- Ali, Z.; Ahmad, R.; Khan, A.; Adalat, B. Organic-inorganic hybrids: An efficient extractant of environmental mercury ions. Mater. Res. Express 2018, 5, 075007. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calcu-lation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Chang, Y.; Lai, J.-Y.; Lee, D.-J. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters: Research updated. Bioresour. Technol. 2016, 222, 513–516. [Google Scholar] [CrossRef]
- Kim, H.; Cho, H.J.; Narayanan, S.; Yang, S.; Furukawa, H.; Schiffres, S.; Li, X.; Zhang, Y.-B.; Jiang, J.; Yaghi, O.M. Character-ization of adsorption enthalpy of novel water-stable zeolites and metal-organic frameworks. Sci. Rep. 2016, 6, 19097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y. Is the Free Energy Change of Adsorption Correctly Calculated? J. Chem. Eng. Data 2009, 54, 1981–1985. [Google Scholar] [CrossRef]
- Peydayesh, M.; Bolisetty, S.; Mohammadi, T.; Mezzenga, R. Assessing the Binding Performance of Amyloid–Carbon Mem-branes toward Heavy Metal Ions. Langmuir 2019, 35, 4161–4170. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, Z.A.; Khattak, A.M.; Iqbal, R.; Ahmad, R.; Khan, A.A.; Usman, M.; Nawaz, F.; Ali, W.; Felegari, Z.; Jan, S.U. Adsorptive removal of Cd2+ from aqueous solutions by a highly stable covalent triazine-based framework. N. J. Chem. 2018, 42, 10234–10242. [Google Scholar] [CrossRef]
- Hussain, M.; Khaliq, M.N.; Nisar, A.; Khan, P.D.M.; Karim, S.; Khan, A.A.; Yi, P.D.X.; Maqbool, M.; Ali, G. TiO2 nanotube array-modified electrodes for L-cysteine biosensing: Experimental and density-functional theory study. Nanotechnology 2020, 31, 505501. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol 3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
Kinetic Models | Parameters | |||
---|---|---|---|---|
Rate Constant (k1 and k2) (g mg−1 min−1) | qe,cal (mg g−1) | qe,exp (mg g−1) | R2 | |
Pseudo-first-order | 0.033 | 1.00 | 0.27466 | 0.951 |
Pseudo-second-order | 4.49 | 0.28368 | 0.999 |
Temperature (K) | Langmuir Parameters | Freundlich Parameters | |||||
---|---|---|---|---|---|---|---|
Qmax. (mg g−1) | KL(mmol·L−1) | RL | R2 | KF (mmol1−1/n kg−1 L1/n) | 1/n | R2 | |
283 | 270.0 | 26.74 | 0.0012 | 0.999 | 1.002 | 0.0025 | 0.994 |
293 | 281.0 | 25.57 | 0.0011 | 0.997 | 1.321 | 0.0991 | 0.984 |
303 | 284.11 | 25.24 | 0.0010 | 0.998 | 1.3321 | 0.0031 | 0.988 |
Temperature (K) | ΔG (kJ mol−1) | ΔH (kJ mol−1) | ΔS (J mol−1 K−1) |
---|---|---|---|
283 | −15.75 | 16.24 | 58.66 |
293 | −16.30 | 16.72 | 58.66 |
313 | −16.86 | 17.32 | 58.66 |
323 | −17.42 | 17.82 | 58.66 |
Complex | Bond Distance | Ead | ΔQCT |
---|---|---|---|
CMP-1 | 2.39 | −9.21 | 0.59 |
CMP-2 | 2.25, 2.41 | −10.03 | 0.70 |
CMP-3 | 2.92, 2.98 | −9.55 | 0.59 |
CMP-4 | 3.45, 3.41, 3.39 | −0.45 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melhi, S.; Ullah Jan, S.; Khan, A.A.; Badshah, K.; Ullah, S.; Bostan, B.; Selamoglu, Z. Remediation of Cd (II) Ion from an Aqueous Solution by a Starch-Based Activated Carbon: Experimental and Density Functional Theory (DFT) Approach. Crystals 2022, 12, 189. https://doi.org/10.3390/cryst12020189
Melhi S, Ullah Jan S, Khan AA, Badshah K, Ullah S, Bostan B, Selamoglu Z. Remediation of Cd (II) Ion from an Aqueous Solution by a Starch-Based Activated Carbon: Experimental and Density Functional Theory (DFT) Approach. Crystals. 2022; 12(2):189. https://doi.org/10.3390/cryst12020189
Chicago/Turabian StyleMelhi, Saad, Saeed Ullah Jan, Adnan Ali Khan, Khan Badshah, Saeed Ullah, Bushra Bostan, and Zeliha Selamoglu. 2022. "Remediation of Cd (II) Ion from an Aqueous Solution by a Starch-Based Activated Carbon: Experimental and Density Functional Theory (DFT) Approach" Crystals 12, no. 2: 189. https://doi.org/10.3390/cryst12020189
APA StyleMelhi, S., Ullah Jan, S., Khan, A. A., Badshah, K., Ullah, S., Bostan, B., & Selamoglu, Z. (2022). Remediation of Cd (II) Ion from an Aqueous Solution by a Starch-Based Activated Carbon: Experimental and Density Functional Theory (DFT) Approach. Crystals, 12(2), 189. https://doi.org/10.3390/cryst12020189