Recoverable Broadband Absorption Based on Ultra-Flexible Meta-Surfaces
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Qu, S.; Pang, Y.; Wang, J.; Yan, M.; Zhang, J.; Wang, Z.; Wang, W. Metamaterial absorber for frequency selective thermal radiation. Infrared Phys. Technol. 2018, 88, 133–138. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Wang, L. Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer. Appl. Phys. Lett. 2014, 105, 071907. [Google Scholar] [CrossRef] [Green Version]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; Luca, A.D.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef] [Green Version]
- Palermo, G.; Sreekanth, K.V.; Maccaferri, N.; Lio, G.E.; Nicoletta, G.; Angelis, F.D.; Hinczewski, M.; Strangi, G. Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics 2021, 10, 295–314. [Google Scholar] [CrossRef]
- Ma, L.; Chen, D.; Zheng, W.; Li, J.; Zahra, S.; Liu, Y.; Zhou, Y.; Huang, Y.; Wen, G. Advanced electromagnetic metamaterials for temperature sensing applications. Front. Phys. 2021, 9, 195. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Chen, Y.P.; Shih, Y.H.; Chen, Y.S.; Lin, X.Y.; Liu, J.H.; Huang, C.Y. Floating terahertz metamaterials with extremely large refractive index sensitivities. Photonics Res. 2021, 9, 1970–1978. [Google Scholar] [CrossRef]
- Cao, W.; Singh, R.; Al-Naib, I.A.; He, M.; Taylor, A.J.; Zhang, W. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt. Lett. 2012, 37, 3366–3368. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wang, J.; Lai, S.; Zhu, X.; Gu, W. Transparent and flexible broadband absorber for the sub-6G band of 5G mobile communication. Opt. Mater. Express 2018, 8, 3351–3358. [Google Scholar] [CrossRef]
- Hannan, S.; Islam, M.T.; Almalki, S.H.; Faruque, M.R.I.; Islam, M. Rotational symmetry engineered, polarization and incident angle-insensitive, perfect metamaterial absorber for X and Ku band wireless applications. Sci. Rep. 2022, 12, 3740. [Google Scholar] [CrossRef]
- Karaaslan, M.; Bağmancı, M.; Ünal, E.; Akgol, O.; Sabah, C. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications. Opt. Commun. 2017, 392, 31–38. [Google Scholar] [CrossRef]
- Alkurt, F.O.; Altintas, O.; Ozakturk, M.; Karaaslan, M.; Akgol, O.; Unal, E.; Sabah, C. Enhancement of image quality by using metamaterial inspired energy harvester. Phys. Lett. A 2020, 384, 126041. [Google Scholar] [CrossRef]
- Fowler, C.; Silva, S.; Thapa, G.; Zhou, J. High efficiency ambient RF energy harvesting by a metamaterial perfect absorber. Opt. Mater. Express 2022, 12, 1242–1250. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Zheng, H.Y.; Kim, Y.J.; Rhee, J.Y.; Kang, J.H.; Kim, K.W.; Cheong, H.; Kim, Y.H.; Lee, Y. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl. Phys. Lett. 2014, 105, 041902. [Google Scholar] [CrossRef]
- Khuyen, B.X.; Tung, B.S.; Kim, Y.J.; Hwang, J.S.; Kim, K.W.; Rhee, J.Y.; Lam, V.D.; Kim, Y.H.; Lee, Y. Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency. Sci. Rep. 2018, 8, 11632. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Ji, S.; Zhao, J.; Wu, H.; Dai, H. A multiband metamaterial absorber for GHz and THz simultaneously. Results Phys. 2021, 30, 104893. [Google Scholar] [CrossRef]
- Lio, G.E.; Ferraro, A.; Giocondo, M.; Caputo, R.; De Luca, A. Color gamut behavior in epsilon near-zero nanocavities during propagation of gap surface plasmons. Adv. Opt. Mater. 2020, 8, 2000487. [Google Scholar] [CrossRef]
- Zhong, M. Design and measurement of a narrow band metamaterial absorber in terahertz range. Opt. Mater. 2020, 100, 109712. [Google Scholar] [CrossRef]
- Gric, T. Spoof plasmons in corrugated transparent conducting oxides. J. Electromagn. Waves Appl. 2016, 30, 721–727. [Google Scholar] [CrossRef]
- Zhang, H.F.; Liu, H.B.; Hu, C.X.; Wang, Z.L. A metamaterial absorber operating in the visible light band based on a cascade structure. Plasmonics 2020, 15, 1755–1766. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, H.; Cheng, Z.; Wu, N. Perfect metamaterial absorber based on a split-ring-cross resonator. Appl. Phys. A 2011, 102, 99–103. [Google Scholar] [CrossRef]
- Assimonis, S.D.; Fusco, V. Polarization insensitive, wide-angle, ultra-wideband, flexible, resistively loaded, electromagnetic metamaterial absorber using conventional inkjet-printing technology. Sci. Rep. 2019, 9, 12334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Wang, Z.H.; Li, L.; Fan, Y.X.; Tao, Z.Y. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber. Sci. Rep. 2019, 9, 5751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baqir, M.A. Conductive metal–oxide-based tunable, wideband, and wide-angle metamaterial absorbers operating in the near-infrared and short-wavelength infrared regions. Appl. Opt. 2020, 59, 10912–10919. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Yin, X.; Ye, F.; Mo, R.; Tang, Z.; Fan, X.; Cheng, L.; Zhang, L. Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure. Appl. Phys. A 2019, 125, 131. [Google Scholar] [CrossRef]
- Sun, K.; Riedel, C.A.; Wang, Y.; Urbani, A.; Simeoni, M.; Mengali, S.; Zalkovskij, M.; Bilenberg, B.; De Groot, C.H.; Muskens, O.L. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft. ACS Photonics 2018, 5, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Shi, Y.; Yang, J.X.; Zhang, X.; Li, L. Broadband transparent absorber based on indium tin oxide-polyethylene terephthalate film. IEEE Access 2019, 7, 137848–137855. [Google Scholar] [CrossRef]
- Hu, F.; Wang, L.; Quan, B.; Xu, X.; Li, Z.; Wu, Z.; Pan, X. Design of a polarization insensitive multiband terahertz metamaterial absorber. J. Phys. D Appl. Phys. 2013, 46, 195103. [Google Scholar] [CrossRef]
- Wang, F.; Huang, S.; Li, L.; Chen, W.; Xie, Z. Dual-band tunable perfect metamaterial absorber based on graphene. Appl. Opt. 2018, 57, 6916–6922. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Zhu, B.; Zhao, J.; Jiang, T. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 2014, 22, 22743–22752. [Google Scholar] [CrossRef]
- Zhou, R.; Jiang, T.; Peng, Z.; Li, Z.; Zhang, M.; Wang, S.; Li, L.; Liang, H.; Ruan, S.; Su, H. Tunable broadband terahertz absorber based on graphene metamaterials and VO2. Opt. Mater. 2021, 114, 110915. [Google Scholar] [CrossRef]
- Yang, G.; Yan, F.; Du, X.; Li, T.; Wang, W.; Lv, Y.; Zhou, H.; Hou, Y. Tunable broadband terahertz metamaterial absorber based on vanadium dioxide. AIP Adv. 2022, 12, 045219. [Google Scholar] [CrossRef]
- Lv, J.F.; Ding, C.; Meng, F.Y.; Han, J.Q.; Jin, T.; Wu, Q. A tunable metamaterial absorber based on liquid crystal with the compact unit cell and the wideband absorption. Liq. Cryst. 2021, 48, 1438–1447. [Google Scholar] [CrossRef]
- Deng, G.; Xia, T.; Jing, S.; Yang, J.; Lu, H.; Yin, Z. A tunable metamaterial absorber based on liquid crystal intended for F frequency band. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2062–2065. [Google Scholar] [CrossRef]
- Jacobsen, R.E.; Arslanagić, S.; Lavrinenko, A.V. Water-based devices for advanced control of electromagnetic waves. Appl. Phys. Rev. 2021, 8, 041304. [Google Scholar] [CrossRef]
- Li, H.; Yuan, H.; Costa, F.; Cao, Q.; Wu, W.; Monorchio, A. Optically transparent water-based wideband switchable radar absorber/reflector with low infrared radiation characteristics. Opt. Express 2021, 29, 42863. [Google Scholar] [CrossRef]
- Xu, R.; Xu, X.; Yang, B.R.; Gui, X.; Qin, Z.; Lin, Y.S. Actively logical modulation of MEMS-based terahertz metamaterial. Photonics Res. 2021, 9, 1409–1415. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Shih, Y.H.; Lin, S.H.; Chen, Y.T.; Wei, W.Y.; Chao, P.L.; Huang, C.Y. Electrically controllable terahertz metamaterials with large tunabilities and low operating electric fields using electrowetting-on-dielectric cells. Opt. Lett. 2021, 46, 5962–5965. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, J.; Yang, M.; Yan, X.; Lu, Y.; Wu, L.; Li, J.; Wei, D.; Liu, L.; Xie, J.; et al. Microfluidic integrated metamaterials for active terahertz photonics. Photonics Res. 2019, 7, 1400–1406. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, H.; Lim, S. Mechanically actuated frequency reconfigurable metamaterial absorber. Sens. Actuator A Phys. 2019, 299, 111619. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, Y.S. A stretchable terahertz parabolic-shaped metamaterial. Adv. Opt. Mater. 2019, 7, 1900379. [Google Scholar] [CrossRef]
- Li, S.; Chen, K.; Zhang, D.; Chen, Y.; Xu, Y.; Liu, J.; Wang, X.; Zhuang, S. Reconfigurable metamaterial for chirality switching and selective intensity modulation. Opt. Express 2020, 28, 34804–34811. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.G.; Kim, Y.J.; Hwang, J.S.; Khuyen, B.X.; Tung, B.S.; Chen, L.-Y.; Lee, Y.P. High-performance double-sided absorber, based on metamaterial. Curr. Appl. Phys. 2019, 19, 1217–1221. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yoo, Y.J.; Kim, K.W.; Rhee, J.Y.; Kim, Y.H.; Lee, Y.P. Dual broadband metamaterial absorber. Opt. Express 2015, 23, 3861–3868. [Google Scholar] [CrossRef]
- Aksyuk, V.; Lahiri, B.; Holland, G.; Centrone, A. Near-Field asymmetries in plasmonic resonators. Nanoscale 2015, 7, 3634. [Google Scholar] [CrossRef]
- Tung, B.S.; Khuyen, B.X.; Kim, Y.J.; Hwang, J.S.; Lam, V.D.; Chen, L.-Y.; Lee, Y.P. Manipulation of the near-field coupling in metamaterial for multi-band absorber. Waves Random Complex Media 2021, 31, 2290–2300. [Google Scholar] [CrossRef]
- Nishijima, Y.; Morimoto, S.; Balčytis, A.; Hashizume, T.; Matsubara, R.; Kubono, A.; To, N.; Ryu, M.; Morikawa, J.; Juodkazis, S. Coupling of molecular vibration and metasurface modes for efficient mid-infrared emission. J. Mater. Chem. C 2022, 10, 451–462. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, P.D.; Ha, D.T.; Tung, B.S.; Khuyen, B.X.; Chi, D.T.; Lam, V.D.; Chen, L.; Zheng, H.; Lee, Y. Recoverable Broadband Absorption Based on Ultra-Flexible Meta-Surfaces. Crystals 2022, 12, 1817. https://doi.org/10.3390/cryst12121817
Tan PD, Ha DT, Tung BS, Khuyen BX, Chi DT, Lam VD, Chen L, Zheng H, Lee Y. Recoverable Broadband Absorption Based on Ultra-Flexible Meta-Surfaces. Crystals. 2022; 12(12):1817. https://doi.org/10.3390/cryst12121817
Chicago/Turabian StyleTan, Pham Duy, Duong Thi Ha, Bui Son Tung, Bui Xuan Khuyen, Do Thuy Chi, Vu Dinh Lam, Liangyao Chen, Haiyu Zheng, and Youngpak Lee. 2022. "Recoverable Broadband Absorption Based on Ultra-Flexible Meta-Surfaces" Crystals 12, no. 12: 1817. https://doi.org/10.3390/cryst12121817
APA StyleTan, P. D., Ha, D. T., Tung, B. S., Khuyen, B. X., Chi, D. T., Lam, V. D., Chen, L., Zheng, H., & Lee, Y. (2022). Recoverable Broadband Absorption Based on Ultra-Flexible Meta-Surfaces. Crystals, 12(12), 1817. https://doi.org/10.3390/cryst12121817