Wetting of Refractory Ceramics with High-Manganese and Structural Steel and Description of Interfacial Interaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specification and Preparation of Samples
2.2. Determination of Wetting Angles
2.3. Degradation Testing of Refractory Materials
2.4. SEM, EDX, and XRD Methods
3. Results and Discussion
3.1. Wetting Tests
3.2. Degradation Testing
3.3. Results of SEM, EDX, and XRD Analyses
4. Conclusions
- The intensity of the interaction at a given interface is influenced by the type of steel involved. High-manganese steel causes much more wear on refractory materials than conventional construction steel.
- Apparent wetting angles (contact angles) were significantly lower for the XT 720 steel than for the 11 523 steel. For high-manganese steel, the contact angles ranged from 10° to 103° depending on the substrate, in contrast to structural steel where non-wetting behavior was observed, and contact angles ranged from 103° to 127°. The decrease in contact angles correlated with the fraction of corundum in the refractories tested, i.e., they decreased with decreasing corundum. In addition, the contact angles decreased slightly with increasing temperature.
- The degradation tests confirmed the aggressive behavior of the XT 720 steel. The most significant erosion occurred in the case of the conventional chamotte material F 36 with a low corundum content and a higher SiO2 and cristobalite content. Conversely, almost no erosion was observed for steel 11 523 in contact with the zirconia material ZR 50 or the high corundum material MK 82.
- The results of SEM, EDX, and XRD analyses confirmed the presence of newly formed phases at the interface of XT 720 steel with the tested refractories. In the case of the refractory material F 36, where the most significant interaction was observed, a glassy phase with manganese-oxide particles was formed at the interface with the high manganese steel. Of the newly detected phases, galaxite-spinel and sillimanite phases were identified.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADSA | Axisymmetric Drop Shape Analysis |
EDX | Energy Dispersive X-ray Spectroscopy |
GDOES | Glow Discharge Optical Emission Spectrometry |
SEM | Scanning Electron Microscopy |
XRD | X-Ray Powder Diffraction |
References
- Grässel, O.; Krüger, L.; Frommeyer, G.; Meyer, L.W. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int. J. Plast. 2000, 16, 1391–1409. [Google Scholar] [CrossRef]
- Krawczyk, J.; Bembenek, M.; Pawlik, J. The role of chemical composition of high-manganese cast steels on wear of excavating chain in railway shoulder bed ballast cleaning machine. Materials 2021, 14, 7794. [Google Scholar] [CrossRef] [PubMed]
- Dana, K.; Sinhamahapatra, S.; Tripathi, H.S.; Ghosh, A. Refractories of alumina-silica system. Trans. Indian Ceram. Soc. 2014, 73, 1–13. [Google Scholar] [CrossRef]
- Fu, L.; Gu, H.; Huang, A.; Or, S.W.; Zou, Y.; Zou, Y.; Zhang, M. Design, fabrication and properties of lightweight wear lining refractories: A review. J. Eur. Ceram. Soc. 2022, 42, 744–763. [Google Scholar] [CrossRef]
- Horckmans, L.; Nielsen, P.; Dierckx, P.; Ducastel, A. Recycling of refractory bricks used in basic steelmaking: A review. Resour. Conserv. Recycl. 2019, 140, 297–304. [Google Scholar] [CrossRef]
- Poirier, J. A review: Influence of refractories on steel quality. Metall. Res. Technol. 2015, 112, 410. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Dudczig, S.; Storti, E.; Ilatovskaia, M.; Endo, R.; Aneziris, C.G.; Volkova, O. Interaction of molten Armco iron with various ceramic substrates at 1600 °C. J. Eur. Ceram. Soc. 2022, 42, 2535–2544. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, A.; Wu, M.; Gu, H. Corrosion of alumina-magnesia castable by high manganese steel with respect to steel cleanness. Ceram. Int. 2019, 45, 9884–9890. [Google Scholar] [CrossRef]
- Ren, X.-M.; Ma, B.-Y.; Li, S.-M.; Li, H.-X.; Liu, G.-Q.; Yang, W.-G.; Qian, F.; Zhao, S.-X.; Yu, J.-K. Comparison study of slag corrosion resistance of MgO–MgAl2O4, MgO–CaO and MgO–C refractories under electromagnetic field. J. Iron Steel Res. Int. 2021, 28, 38–45. [Google Scholar] [CrossRef]
- Alhussein, A.; Yang, W. Mechanism of interface reactions between Fe-2%Al alloy and high-silica tundish refractory. Trans. Indian Inst. Met. 2019, 72, 591–602. [Google Scholar] [CrossRef]
- Alhussein, A.; Yang, W.; Zhang, L. Effect of interactions between Fe–Al alloy and MgO-based refractory on the generation of MgO·Al2O3 spinel. Ironmak. Steelmak. 2020, 47, 424–431. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, X.; Chen, B.; Wang, W. Formation of MgO·Al2O3 inclusions in high strength alloyed structural steel refined by CaO-SiO2-Al2O3-MgO slag. ISIJ Int. 2008, 48, 885–890. [Google Scholar] [CrossRef] [Green Version]
- Ehara, Y.; Yokoyama, S.; Kawakami, M. Formation mechanism of inclusions containing MgO·Al2O3 spinel in type 304 stainless steel. Tetsu Hagane 2007, 93, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Lee, S.-B.; Gaye, H.R. Thermodynamics of the formation of MgO-Al2O3-TiOx inclusions in Ti-stabilized 11Cr ferritic stainless steel. Metall. Mater. Trans. B 2008, 39, 853–861. [Google Scholar] [CrossRef]
- Zhang, L.; Thomas, B.G. State of the art in the control of inclusions during steel ingot casting. Metall. Mater. Trans. B 2006, 37, 733–761. [Google Scholar] [CrossRef]
- Park, J.H.; Zhang, L. Kinetic modeling of nonmetallic inclusions behavior in molten steel: A review. Metall. Mater. Trans. B 2020, 51, 2453–2482. [Google Scholar] [CrossRef]
- Polkowski, W.; Sobczak, N.; Polkowska, A.; Nowak, R.; Kudyba, A.; Bruzda, G.; Giuranno, D.; Generosi, A.; Paci, B.; Trucchi, D.M. Ultra-high temperature interaction between h-BN-based composite and molten silicon. Metall. Mater. Trans. A 2019, 50, 997–1008. [Google Scholar] [CrossRef] [Green Version]
- López, V.H.; Kennedy, A.R. Flux-assisted wetting and spreading of Al on TiC. J. Colloid Interface Sci. 2006, 298, 356–362. [Google Scholar] [CrossRef]
- Kumar, G.; Prabhu, K.N. Review of non-reactive and reactive wetting of liquids on surfaces. Adv. Colloid Interface 2007, 133, 61–89. [Google Scholar] [CrossRef]
- Shibata, H.; Jiang, X.; Valdez, M.; Cramb, A.W. The contact angle between liquid iron and a single-crystal magnesium oxide substrate at 1873 K. Metall. Mater. Trans. B 2004, 35, 179–181. [Google Scholar] [CrossRef]
- Eustathopoulos, N.; Voytovych, R. The role of reactivity in wetting by liquid metals: A review. J. Mater. Sci. 2016, 51, 425–437. [Google Scholar] [CrossRef]
- Sobczak, N.; Singh, M.; Asthana, R. High-temperature wettability measurements in metal/ceramic systems—Some methodological issues. Curr. Opin. Solid State Mater. Sci. 2005, 9, 241–253. [Google Scholar] [CrossRef]
- Zhou, X.B.; De Hosson, J.T.M. Reactive wetting of liquid metals on ceramic substrates. Acta Mater. 1996, 44, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhu, H.; Zhao, J.; Song, M.; Xue, Z. Steel/refractory/slag interfacial reaction and its effect on inclusions in high-Mn high-Al steel. Ceram. Int. 2022, 48, 1090–1097. [Google Scholar] [CrossRef]
- Alibeigi, S.; Kavitha, R.; Meguerian, R.J.; McDermid, J.R. Reactive wetting of high Mn steels during continuous hot-dip galvanizing. Acta Mater. 2011, 59, 3537–3549. [Google Scholar] [CrossRef]
- Pourmajidian, M.; McDermid, J.R. On the reactive wetting of a medium-Mn advanced high-strength steel during continuous galvanizing. Surf. Coat. Technol. 2019, 357, 418–426. [Google Scholar] [CrossRef]
- Yang, T.; He, Y.; Chen, Z.; Zheng, W.; Wang, H.; Li, L. Effect of dew point and alloy composition on reactive wetting of hot dip galvanized medium manganese lightweight steel. Coatings 2020, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Deng, Z.; Zhu, M. Reaction behaviors of Al-killed medium-manganese steel with different refractories. Metall. Mater. Trans. B 2018, 49, 1444–1452. [Google Scholar] [CrossRef]
- Saad, S.M.I.; Neumann, A.W. Axisymmetric drop shape analysis (ADSA): An outline. Adv. Colloid. Interface 2016, 238, 62–87. [Google Scholar] [CrossRef]
- Brooks, R.F.; Quested, P.N. The surface tension of steels. J. Mater. Sci. 2005, 40, 2233–2238. [Google Scholar] [CrossRef]
- Dubberstein, T.; Heller, H.-P.; Klostermann, J.; Schwarze, R.; Brillo, J. Surface tension and density data for Fe–Cr–Mo, Fe–Cr–Ni, and Fe–Cr–Mn–Ni steels. J. Mater. Sci. 2015, 50, 7227–7237. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Wang, Z.; Wang, S.; Zhao, H.; Cai, Z.; Wang, Y.; Ma, H.-A.; Chen, L.; Jia, X. Orientational dependences of diamonds grown in the NiMnCo-Silicate-H2O-C system under HPHT conditions and implications to natural diamonds. ACS Earth Space Chem. 2022, 6, 987–998. [Google Scholar] [CrossRef]
- Bhagurkar, A.G.; Qin, R. The microstructure formation in slag solidification at continuous casting mold. Metals 2022, 12, 617. [Google Scholar] [CrossRef]
Sample | Firing Temperature [°C] | Volumetric Weight [g·cm−3] | Water Absorption [%] | Apparent Porosity [%] |
---|---|---|---|---|
F 36 | 1250 | 2.03 | 12.48 | 25.4 |
ZR 50 | 1280 | 2.97 | 6.29 | 18.7 |
B 70 | 1250 | 2.36 | 8.95 | 21.1 |
ML 65 | 1250 | 2.37 | 8.83 | 20.9 |
M 70 | 1380 | 2.45 | 8.83 | 21.6 |
MK 82 | 1380 | 2.61 | 8.75 | 22.9 |
Sample | Corundum | Mullite | Cristobalite | Quartz | Zircon | Baddeleyite | Amorphous phase |
---|---|---|---|---|---|---|---|
F 36 | 2.4 | 45.6 | 0.9 | 6.9 | ― | ― | 44.2 |
ZR 50 | 14.4 | 26.4 | ― | ― | 54.1 | 5.1 | ― |
B 70 | 23.7 | 35.1 | 3.2 | 4.0 | ― | ― | 34.0 |
ML 65 | 17.9 | 46.7 | 0.2 | 0.5 | ― | ― | 34.7 |
M 70 | 26.2 | 45.3 | 0.3 | 1.0 | ― | ― | 27.2 |
MK 82 | 59.4 | 24.4 | ― | 0.1 | ― | ― | 16.1 |
Sample | Al2O3 | SiO2 | TiO2 | Fe2O3 | CaO | MgO | K2O | Na2O | ZrO2 |
---|---|---|---|---|---|---|---|---|---|
F 36 | 40.3 | 54.5 | 1.6 | 1.8 | 0.3 | 0.3 | 1.0 | 0.2 | ― |
ZR 50 | 23.1 | 35.4 | 0.7 | 0.8 | 0.2 | 0.2 | 0.6 | 0.3 | 38.7 |
B 70 | 70.5 | 23.7 | 2.5 | 1.9 | 0.3 | 0.2 | 0.8 | 0.1 | ― |
ML 65 | 64.1 | 30.8 | 1.7 | 1.7 | 0.4 | 0.2 | 0.9 | 0.2 | ― |
M 70 | 72.6 | 25.2 | 0.5 | 0.6 | 0.1 | 0.1 | 0.7 | 0.2 | ― |
MK 82 | 83.1 | 14.8 | 0.4 | 0.6 | 0.1 | 0.1 | 0.6 | 0.3 | ― |
Steel | C | Mn | Si | P | S | Cu | Ni | Cr | Mo | V | Ti | Al | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XT 720 | 1.29 | 19.33 | 0.73 | 0.04 | 0.004 | 0.11 | 0.10 | 1.99 | 0.06 | 0.02 | 0.01 | 0.04 | 0.03 |
11 523 | 0.22 | 0.67 | 0.40 | 0.01 | 0.003 | 0.09 | 0.11 | 0.14 | 0.03 | ― | ― | ― | 0.01 |
The remainder up to 100 wt% was iron. |
Point | Caption | Mn | Si | Al | O | C | P | Fe | Zr | Zn | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|
(wt%) | |||||||||||
1 | Aluminosilicate with Mn oxide particles | 36.1 | 20.0 | 10.1 | 33.8 | ― | ― | ― | ― | ― | ― |
2 | Manganese oxide | 54.8 | 9.5 | 7.4 | 28.3 | ― | ― | ― | ― | ― | ― |
3 | Zirconium silicate | ― | 13.4 | ― | 48.3 | ― | ― | ― | 38.3 | ― | ― |
4 | Probably Schreibersite and Fe, Mn. and Cr oxide particles | 21.9 | 2.7 | 1.0 | 30.7 | 5.1 | 2.7 | 27.5 | ― | 1.9 | 6.5 |
5 | Baddeleyite | 1.9 | ― | ― | 31.3 | ― | ― | ― | 66.8 | ― | ― |
6 | Aluminosilicate | 23.9 | 21.5 | 12.8 | 41.8 | ― | ― | ― | ― | ― | ― |
7 | Corundum (Al partially substituted by Mn) | 26.2 | 1.3 | 32.1 | 40.4 | ― | ― | ― | ― | ― | ― |
8 | Aluminosilicate with Mn oxide | 42.5 | 18.9 | 8.3 | 30.3 | ― | ― | ― | ― | ― | ― |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novák, V.; Řeháčková, L.; Rosypalová, S.; Matýsek, D. Wetting of Refractory Ceramics with High-Manganese and Structural Steel and Description of Interfacial Interaction. Crystals 2022, 12, 1782. https://doi.org/10.3390/cryst12121782
Novák V, Řeháčková L, Rosypalová S, Matýsek D. Wetting of Refractory Ceramics with High-Manganese and Structural Steel and Description of Interfacial Interaction. Crystals. 2022; 12(12):1782. https://doi.org/10.3390/cryst12121782
Chicago/Turabian StyleNovák, Vlastimil, Lenka Řeháčková, Silvie Rosypalová, and Dalibor Matýsek. 2022. "Wetting of Refractory Ceramics with High-Manganese and Structural Steel and Description of Interfacial Interaction" Crystals 12, no. 12: 1782. https://doi.org/10.3390/cryst12121782
APA StyleNovák, V., Řeháčková, L., Rosypalová, S., & Matýsek, D. (2022). Wetting of Refractory Ceramics with High-Manganese and Structural Steel and Description of Interfacial Interaction. Crystals, 12(12), 1782. https://doi.org/10.3390/cryst12121782