Influence of Fault Current and Different Oscillating Magnetic Fields on Electromagnetic–Thermal Characteristics of the REBCO Coil
Abstract
:1. Introduction
2. Numerical Model and Method
2.1. Geometrics of the HTS Coil
2.2. Model Description
3. Result and Discussion
3.1. Loss and Temperature Change during Fault Current Conditions at Self-Field
3.2. Loss and Temperature Change during Fault Current Conditions at In-Field
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baez-Munoz, A.; Trillaud, F.; Rodriguez-Rodriguez, J.R.; Castro, L.M.; Escarela-Perez, R. Thermoelectromagnetic lumped-parameter model of High Temperature Superconductor generators for transient stability analysis. IEEE Trans. Appl. Supercond. 2021, 31, 5201705. [Google Scholar] [CrossRef]
- Yazdani-Asrami, M.; Staines, M.; Sidorov, G.; Davies, M.; Bailey, J.; Allpress, N.; Glasson, N.; Gholamian, S.A. Fault current limiting HTS transformer with extended fault withstand time. Supercond. Sci. Technol. 2019, 32, 035006. [Google Scholar] [CrossRef]
- Chen, X.; Gou, H.; Chen, Y.; Jiang, S.; Zhang, M.; Pang, Z.; Shen, B. Superconducting fault current limiter (SFCL) for a power electronic circuit: Experiment and numerical modelling. Supercond. Sci. Technol. 2022, 35, 045010. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, M.; Jiang, S.; Gou, H.; Zhou, P.; Yang, R.; Shen, B. Energy reliability enhancement of a data center/wind hybrid DC network using superconducting magnetic energy storage. Energy 2023, 263, 125622. [Google Scholar] [CrossRef]
- Inoue, R.; Ueda, H.; Kim, S.; Tsuda, M. Thermal characteristics of REBCO coil in a wireless power transmission system for the railway vehicle in liquid nitrogen. IEEE Trans. Appl. Supercond. 2021, 31, 4700905. [Google Scholar] [CrossRef]
- Wu, J.; Tan, Y.; Luo, S.; Hei, Y. Study on Energy Dissipation Mechanism of HTS Tapes in the Impact and Recovery Process. IEEE Trans. Appl. Supercond. 2022, 32, 5600408. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, X.-Y.; Feng, Y.-J.; Chen, Y.; Xie, Q. Temperature field simulations of a ReBCO pancake coil under pulsed overcurrent conditions. IEEE Trans. Appl. Supercond. 2019, 29, 5900305. [Google Scholar] [CrossRef]
- Shen, B.; Li, C.; Geng, J.; Dong, Q.; Ma, J.; Gawith, J.; Zhang, K.; Li, Z.; Chen, J.; Zhou, W.; et al. Power dissipation in the HTS coated conductor tapes and coils under the action of different oscillating currents and fields. IEEE Trans. Appl. Supercond. 2019, 29, 8201105. [Google Scholar] [CrossRef]
- Shen, B.; Chen, X.; Fu, L.; Hao, L.; Coombs, T. Numerical Modelling of the Dynamic Voltage in HTS Materials under the Action of DC Transport Currents and Different Oscillating Magnetic Fields. Materials 2022, 15, 795. [Google Scholar] [CrossRef]
- Glowacki, J.; Sun, Y.; Storey, J.G.; Huang, T.; Badcock, R.; Jiang, Z. Temperature Distribution in the Field Coil of a 500-kW HTS AC Homopolar Motor. IEEE Trans. Appl. Supercond. 2022, 32, 5200108. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, Z.; Grilli, F.; Gyftakis, K.; Mueller, M. Alternating current loss of superconductors applied to superconducting electrical machines. Energies 2021, 14, 2234. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Dejamkhooy, A. Modeling and Analysis of HTS Distribution Transformers Under Various Conditions Using FEM. J. Supercond. Nov. Magn. 2022, 35, 1847–1856. [Google Scholar] [CrossRef]
- Duron, J.; Grilli, F.; Dutoit, B.; Stavrev, S. Modelling the E–J relation of high-Tc superconductors in an arbitrary current range. Phys. C 2004, 401, 231–235. [Google Scholar] [CrossRef]
- Xia, J.; Zhou, Y. Numerical simulations of electromagnetic behavior and AC loss in rectangular bulk superconductor with an elliptical flaw under AC magnetic fields. Cryogenics 2015, 69, 1–9. [Google Scholar] [CrossRef]
- Niu, M.; Yong, H.; Xia, J.; Zhou, Y. The effects of ferromagnetic disks on AC losses in HTS pancake coils with nonmagnetic and magnetic substrates. J. Supercond. Nov. Magn. 2019, 32, 499–510. [Google Scholar] [CrossRef]
- Shen, B.; Grilli, F.; Coombs, T. Overview of H-formulation: A versatile tool for modeling electromagnetics in high-temperature superconductor applications. IEEE Access 2020, 8, 100403–100414. [Google Scholar] [CrossRef]
- Shen, B.; Grilli, F.; Coombs, T. Review of the AC loss computation for HTS using H formulation. Supercond. Sci. Technol. 2020, 33, 033002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yao, M.; Kails, K.; Machura, P.; Mueller, M.; Jiang, Z.; Xin, Y.; Li, Q. Modelling of electromagnetic loss in HTS coated conductors over a wide frequency band. Supercond. Sci. Technol. 2020, 33, 025004. [Google Scholar] [CrossRef]
- Zhang, H.; Machura, P.; Kails, K.; Chen, H.; Mueller, M. Dynamic loss and magnetization loss of HTS coated conductors, stacks, and coils for high-speed synchronous machines. Supercond. Sci. Technol. 2020, 33, 084008. [Google Scholar] [CrossRef]
- Ma, J.; Geng, J.; Chan, W.K.; Schwartz, J.; A Coombs, T. A temperature-dependent multilayer model for direct current carrying HTS coated-conductors under perpendicular AC magnetic fields. Supercond. Sci. Technol. 2020, 33, 045007. [Google Scholar] [CrossRef]
- Shen, B.; Chen, Y.; Li, C.; Wang, S.; Chen, X. Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software. Energy 2021, 234, 121251. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, C.; Qian, H.; Queval, L.; Luo, Z.; Deng, Y.; Li, J.; Li, Y.; Ma, G. Frequency-dependent transport AC losses of coated superconductors up to tens of kilohertz. IEEE Trans. Appl. Supercond. 2019, 29, 8201705. [Google Scholar] [CrossRef]
- Zhang, M.; Matsuda, K.; Coombs, T.A. New application of temperature-dependent modelling of high temperature superconductors: Quench propagation and pulse magnetization. J. Appl. Phys. 2012, 112, 043912. [Google Scholar] [CrossRef]
- Zou, S.; Zermeño, V.M.R.; Grilli, F. Simulation of stacks of high-temperature superconducting coated conductors magnetized by pulsed field magnetization using controlled magnetic density distribution coils. IEEE Trans. Appl. Supercond. 2016, 26, 8200705. [Google Scholar] [CrossRef] [Green Version]
- Matula, R.A. Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 1979, 8, 1147–1298. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zhang, G.; Jing, L.; Yu, H. Numerical study on AC loss reduction of stacked HTS tapes by optimal design of flux diverter. Supercond. Sci. Technol. 2017, 30, 125014. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, G.; Jing, L.; Ai, L.; Yu, H.; Li, W.; Liu, Q. Study on the AC loss reduction of REBCO double pancake coil. IEEE Trans. Appl. Supercond. 2018, 28, 8201606. [Google Scholar] [CrossRef]
Parameters | REBCO | Kapton |
---|---|---|
Superconductor width (mm) | 4 | N.A. |
Superconductor thickness (μm) | 1 | N.A. |
Silver layer thickness (μm) | 2 | N.A. |
Substrate thickness (μm) | 50 | N.A. |
Copper layer width (mm) | 4.04 | N.A. |
Copper layer thickness (μm) | 20 | N.A. |
Insulation layer thickness (mm) | N.A. | 0.2 [15] |
Insulation layer width (mm) | N.A. | 4.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Jin, R.; Wang, S.; Ye, Y.; Chi, F.; Xu, M.; Liu, L.; Qian, Y.; Zhang, Y.; Shen, B. Influence of Fault Current and Different Oscillating Magnetic Fields on Electromagnetic–Thermal Characteristics of the REBCO Coil. Crystals 2022, 12, 1688. https://doi.org/10.3390/cryst12121688
Chen W, Jin R, Wang S, Ye Y, Chi F, Xu M, Liu L, Qian Y, Zhang Y, Shen B. Influence of Fault Current and Different Oscillating Magnetic Fields on Electromagnetic–Thermal Characteristics of the REBCO Coil. Crystals. 2022; 12(12):1688. https://doi.org/10.3390/cryst12121688
Chicago/Turabian StyleChen, Wei, Rong Jin, Shuxin Wang, Yunyang Ye, Fei Chi, Minghai Xu, Liyuan Liu, Yece Qian, Yufeng Zhang, and Boyang Shen. 2022. "Influence of Fault Current and Different Oscillating Magnetic Fields on Electromagnetic–Thermal Characteristics of the REBCO Coil" Crystals 12, no. 12: 1688. https://doi.org/10.3390/cryst12121688
APA StyleChen, W., Jin, R., Wang, S., Ye, Y., Chi, F., Xu, M., Liu, L., Qian, Y., Zhang, Y., & Shen, B. (2022). Influence of Fault Current and Different Oscillating Magnetic Fields on Electromagnetic–Thermal Characteristics of the REBCO Coil. Crystals, 12(12), 1688. https://doi.org/10.3390/cryst12121688