Effect of rGO wt.% on the Preparation of rGO/CuO Nanocomposites at Different Test Periods and Temperatures
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Graphene Oxide Nano-Particles
2.3. Synthesis of rGO-CuO Nanoparticles
2.4. Measurements
2.5. Characterization Techniques
3. Results and Discussions
3.1. rGO/CuO X-ray Diffraction
3.2. Effect of Additives on the Crystallinity Index (Ic) of rGO/CuO
3.3. Effect of Temperature on the Crystallinity Index (Ic) of rGO/CuO
3.4. Effect of Test Period on Ic of rGO, CuO and rGO/CuO
3.5. Dynamic Light Scattering (DLS) Analysis
3.6. Zeta Potential
3.7. FTIR Analyses
3.8. Electrochemical Impedance and Cyclic Voltametry of rGO/CuO
4. Conclusions
- The rGO-CuO composites had XRD diffraction peaks at 22°, 20°, 43.58°, 50.70°, and 74.37° related to the (111), (200), (202), (220), and (102) planes of pure CuO, and peaks at 22.20° and 43.58° were assigned to the (002) and (100) planes of reduced graphene oxide.
- The crystallite sizes of the rGO/CuO XRD peaks were 18.114320 Å, 225.1856 Å, 321.41740 Å, and 365.98290 Å and the micro strain results for 2ϴ were 22.2031°, 43.5865°, 50.7050°, and 74.3729°, respectively.
- As the rGO wt.% increased the crystallinity index (Ic) of rGO/CuO decreased directly.
- The values of the crystallinity index based on Segal’s empirical method [14] were found to be higher than those based on the Acryst and (Aamorph) total area for all rGO, CuO, and rGO/CuO values.
- As the test temperature increased, the crystallinity index for both rGO and rGO/CuO increased and that for CuO decreased. CuO had higher Ic values followed by rGO/CuO and rGO values, respectively.
- As the test period increased, the crystallinity index values of rGO, CuO, and rGO/CuO decreased according to both the previous methods. CuO had higher Ic values followed by rGO/CuO and rGO, respectively.
- The effect of test temperature on the crystallinity index values of CuO, rGO/CuO, and rGO was found to be higher than the effect of test periods.
- The DLS measurement reported an average crystallite size of 0.7, 8.8, 25.4, and 38.5 nm for 0.125%, 0.25%, 0.50%, and 1.0% rGO-CuO respectively. So, as the rGO% increased, the average crystallite size increased.
- The rGO/CuO composite contained negative charges of; −32.5 mV, −44.8 mV, −53.4 mV, and −66.3 mV for 0.125%, 0.25%, 0.5%, and 1.0% rGO/CuO, respectively, which indicated that as the rGO wt.% increased the electrostatic repulsive forces increased also.
- FTIR spectroscopy identified the existence of vibrational frequencies and the pseudo-capacitance mode related to CuO nanoparticles.
- The cyclic voltammetry of rGO-CuO indicated the electrochemical activity increment, large capacitance, and conduction of the reduced rGO/CuO composite.
- The specific capacitance measurements were 561 F/g, 582 F/g, 597 F/g, and 611 F/g for Y1, Y2, Y3 and Y4 of rGO/CuO composites at a scan rate of 2 V·s−1, indicating good electrochemical performance. As rGO wt.% increased, the specific capacitance increase.
- The specific capacitance was found to be between 500 and 8000 cycles, indicating that rGO/CuO cyclic stability was coupled with higher rGO-CuO electrode reversibility. So, the electrochemical impedance and cyclic voltammetry successfully evaluated the rGO/CuO electrode materials’ capacitive nature.
- As per the specific capacitance found below 611 F/g, rGO/CuO can act as an electrode material for supercapacitor applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Q.; Tan, X.; Liu, Y.; Liu, S.; Li, M.; Gu, Y.; Zhang, P.; Ye, S.; Yang, Z.; Yang, Y. Biomass-derived porous graphitic carbon materials for energy and environmental applications. J. Mater. Chem. A 2020, 8, 5773–5811. [Google Scholar] [CrossRef]
- Ozbay, N.; Yargic, A.S. Carbon foam production from bio-based polyols of liquefied spruce tree sawdust: Effects of biomass/solvent mass ratio and pyrolytic oil addition. J. Appl. Polym. Sci. 2018, 136, 47185. [Google Scholar] [CrossRef]
- Jain, A.; Balasubramanian, R.; Srinivasan, M. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Surwade, S.P.; Smirnov, S.N.; Vlassiouk, I.V.; Unocic, R.R.; Dai, S.; Mahurin, S.M. Water desalination using nanoporous single-layer graphene with tunable pore size. Nat. Nanotechnol. 2015, 10, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Mariana, L.T.; Phan, A.N. Biomass-waste derived graphene quantum dots and their applications. Carbon 2018, 140, 77–99. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Johir, A.H.; Zhou, J.L.; Ngo, H.H.; Nghiem, L.D.; Richardson, C.; Moni, M.A.; Bryant, M.R. Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption. J. Clean. Prod. 2019, 225, 405–413. [Google Scholar] [CrossRef]
- Xu, M.; Xing, L.; Zhang, Q.; Pu, J. Ultrasonic-assisted Method of Graphite Preparation from Wheat Straw. BioResources 2017, 12, 6405–6417. [Google Scholar] [CrossRef]
- Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X. Biomass derived carbon for energy storage devices. J. Mater. Chem. A 2017, 5, 2411–2428. [Google Scholar] [CrossRef]
- Ding, Z.; Li, F.; Wen, J.; Wang, X.; Sun, R. Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chem. 2018, 20, 1383–1390. [Google Scholar] [CrossRef]
- Das, V.K.; Shifrina, Z.B.; Bronstein, L.M. Graphene and graphene-like materials in biomass conversion: Paving the way to the future. J. Mater. Chem. A 2017, 5, 25131–25143. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Jiang, Y.; Balasubramanian, R. Synthesis, formation mechanisms and applications of biomass-derived carbonaceous materials: A critical review. J. Mater. Chem. A 2021, 9, 24759–24802. [Google Scholar] [CrossRef]
- Ogale, A.A.; Zhang, M.; Jin, J. Recent advances in carbon fibers derived from biobased precursors. J. Appl. Polym. Sci. 2016, 133, 1–13. [Google Scholar] [CrossRef]
- Mugadza, K.; Stark, A.; Ndungu, P.G.; Nyamori, V.O. Synthesis of carbon nanomaterials from biomass utilizing ionic liquids for potential application in solar energy conversion and storage. Materials 2020, 13, 3945. [Google Scholar] [CrossRef]
- Taer, E.; Apriwandi, A.; Taslim, R.; Agutino, A.; Yusra, D.A. Conversion Syzygium oleana leaves biomass waste to porous activated carbon nanosheet for boosting supercapacitor performances. J. Mater. Res. Technol. 2020, 9, 13332–13340. [Google Scholar] [CrossRef]
- Haile, A.; Gelebo, G.G.; Tesfaye, T.; Mengie, W.; Mebrate, M.A.; Abuhay, A.; Limeneh, D.Y. Pulp and paper mill wastes: Utilizations and prospects for high value-added biomaterials. Bioresour. Bioprocess. 2021, 8, 1–22. [Google Scholar] [CrossRef]
- Yan, Q.; Zhang, X.; Li, J.; Hassan, E.B.; Wang, C.; Zhang, J.; Cai, Z. Catalytic conversion of Kraft lignin to bio-multilayer graphene materials under different atmospheres. J. Mater. Sci. 2018, 53, 8020–8029. [Google Scholar] [CrossRef]
- Li, J.; Yan, Q.; Zhang, X.; Zhang, J.; Cai, Z. Efficient Conversion of LigninWaste to High Value Bio-Graphene Oxide Nanomaterials. Polymer. 2019, 11, 623. [Google Scholar] [CrossRef]
- Lin, P.C.; Wu, J.Y.; Liu, W.R. Green and facile synthesis of few layer graphene via liquid exfoliation process for Lithium-ion batteries. Sci. Rep. 2018, 8, 9766. [Google Scholar] [CrossRef]
- Lekshmi, G.S.; Tamilselvi, R.; Geethalakshmi, R.; Kirupha, S.D.; Bazaka, O.; Levchenko, I.; Bazaka, K.; Mandhakini, M. Multifunctional oil-produced reduced graphene oxide—Silver oxide composites with photocatalytic, antioxidant, and antibacterial activities. J. Colloid Interface Sci. 2022, 608, 294–305. [Google Scholar] [CrossRef]
- Azmi, A.F.M.; Kannan, V.; Yasin, N.S.; Abdul Rashi, J.I.; Omar, A.; Emee Marina Salleh, E.M. Effect of time and temperature on reduced graphene oxide (rGO) layer stability and cyclic voltammetric behaviour of modified screen-printed carbon electrode (mSPCE) for biosensing purposes. Malays. J. Anal. Sci. 2020, 24, 800–809. [Google Scholar]
- Xu, V.W.; Nizam, M.Z.I.; Yin, I.X.; Yu, O.Y.; Lung, C.Y.K.; Chu, C.H. Application of Copper Nanoparticles in Dentistry. Nanomaterials 2022, 12, 805. [Google Scholar] [CrossRef] [PubMed]
- Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 2020, 6, e04508. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.S.; Patra, A.; Shruthi, G.; Chandan, S. Aqueous Extract of Saraca indica Leaves in the Synthesis of Copper Oxide Nanoparticles: Finding a Way towards Going Green. J. Nanotechnol. 2017, 2017, 7502610. [Google Scholar]
- Mahendra, G.; Malathi, R.; Kedhareswara, S.; Lakshmi-Narayana, A.; Dhananjaya, M.; Guruprakash, N.; Hussain, O.; Mauger, A.; Julien, C. RF Sputter-Deposited Nanostructured CuO Films for Micro-Supercapacitors. Appl. Nano 2021, 2, 46–66. [Google Scholar] [CrossRef]
- Farhad, S.F.U.; Majumder, S.; Hossain, A.; Tanvir, N.I.; Akter, R.; Patwary, A.M. Effect of Solution pH and Post-annealing temperatures on the Optical Bandgap of the Copper Oxide Thin Films Grown by modified SILAR Method. MRS Adv. 2019, 4, 937–944. [Google Scholar] [CrossRef]
- Aher, Y.B.; Jain, G.H.; Patil, G.E.; Savale, A.R.; Ghotekar, S.K.; Pore, D.M.; Pansambal, S.S.; Deshmukh, K.K. Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against the selected human pathogens. Int. J. Mol. Clin. Microbiol. 2017, 7, 776–786. [Google Scholar]
- Qamar, H.; Rehman, S.; Chauhan, D.K.; Tiwari, A.K.; Upmanyu, V. Green synthesis, characterization and antimicrobial activity of copper oxide nanomaterial derived from momordica charantia. Int. J. Nanomed. 2020, 15, 2541–2553. [Google Scholar] [CrossRef]
- Manjunatha, K.B.; Bhat, R.S.; Shashidhara, A.; Kumar, H.S.A.; Nagashree, S. Antimicrobial and Nonlinear Optical Studies of Copper Oxide Nanoparticles. J. Electron. Mater. 2021, 50, 3415–3421. [Google Scholar] [CrossRef]
- Bruno, E.; Haris, M.; Mohan, A.; Senthilkumar, M. Temperature effect on CuO nanoparticles via facile hydrothermal approach to effective utilization of UV–visible region for photocatalytic activity. Appl. Phys. A 2021, 127, 925. [Google Scholar] [CrossRef]
- Moralesa, J.; Sa´ncheza, L.; Martín, F.; Barradob, J.R.R.; Sánchez, M. Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Film 2005, 474, 133–140. [Google Scholar] [CrossRef]
- Pandian, P.M.; Pandurangan, A. Copper nanoparticles anchored onto boron-doped graphene nanosheets for use as a high performance asymmetric solid-state supercapacitor. RSC Adv. 2019, 9, 3443–3461. [Google Scholar] [CrossRef]
- Shokouhi, S.F.; Nasirpouri, F.; Khatamian, M. Epoxy-matrix polyaniline/p-phenyl enedi-amine functionalised graphene oxide coatings with dualanti-corrosion and anti-fouling performance. R. Soc. Chem. RSC Adv. 2021, 11, 11627–11641. [Google Scholar] [CrossRef]
- Fazli-Shokouhi, S.; Nasirpouri, F.; Khatamian, M. Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties. J. Coat. Technol. Res. 2019, 16, 983–997. [Google Scholar] [CrossRef]
- Selim, M.S.; Mo, P.J.; Hao, Z.; Fatthallah, N.A.; Chen, X. Blade-like structure of graphene oxide sheets decorated with cuprous oxide and silicon carbide nanocomposites as bactericidal materials. J. Colloid Interface Sci. 2020, 578, 698–709. [Google Scholar] [CrossRef]
- Haidaria, M.M.; Kimb, H.; Kima, J.H.; Leec, S.; Yud, Y.J.; Kime, J.T.; Choif, C.G.; Choia, J.S. Graphene laminated Cu nanoparticle arrays by spontaneous formation through dewetting. J. Ind. Eng. Chem. 2018, 64, 367–372. [Google Scholar] [CrossRef]
- Di Bernardo, I.; Bradford, J.; Fusco, Z.; Mendoza, J.; Phu, T.T.; Bo, R.; Motta, N.; Tricoli, A. Self-assembly of noble metal-free grapheme—Copper plasmonic metasurfaces. J. Mater. Chem. C 2020, 8, 11896–11905. [Google Scholar] [CrossRef]
- Li, S.; Yang, B.; Wang, C.; Wang, J.; Feng, Y.; Yan, B.; Xiong, Z.; Du, Y. A facile and green fabrication of Cu2O-Au/NG nanocomposites for sensitive electrochemical determination of rutin. J. Electroanal. Chem. 2017, 786, 20–27. [Google Scholar] [CrossRef]
- Bhavyasree, P.G.; Xavier, T.S. Green synthesis of copper oxide/carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity. Heliyon 2020, 6, e03323. [Google Scholar] [CrossRef]
- Ansari, A.R.; Ansari, S.A.; Parveen, N.; Ansari, M.O.; Osman, Z. Silver Nanoparticles Embedded on Reduced Graphene Oxide@Copper Oxide Nanocomposite for High Performance Supercapacitor Applications. Materials 2021, 14, 5032. [Google Scholar] [CrossRef]
- Folorunso, O.; Sadiku, R.; Hamam, Y.; Ray, S.S. An investigation of copper oxide-loaded reduced graphene oxide nanocomposite for energy storage applications. Appl. Phys. A 2021, 128, 54. [Google Scholar] [CrossRef]
- Siddique, S.; ul-Abdin, Z.; Waseem, M.; Naseem, T.; Bibi, A.; Hafeez, M.; Ud Din, S.; Haq, S.; Ureshi, S. Photo-catalytic and anti-microbial activities of rGO/CuO nanocomposite. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1359–1372. [Google Scholar] [CrossRef]
- Pratheepa, M.I.; Lawrence, M. Synthesis of CuO-reduced graphene oxide nanocomposite for high performance electrochemical Capacitors. Int. J. Res. 2018, 5, 4519–4524. [Google Scholar]
- Yadav, A.A.; Hunge, Y.M.; Kang, S.W. Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalystfor sonocatalytic degradation and photocatalytic hydrogen production. Surf. Interfaces 2021, 24, 101075. [Google Scholar] [CrossRef]
- Yadav, A.; Hunge, Y.; Kang, S.-W. Spongy ball-like copper oxide nanostructure modified by reduced graphene oxide for enhanced photocatalytic hydrogen production. Mater. Res. Bull. 2020, 133, 111026. [Google Scholar] [CrossRef]
- Ding, D.; Maeyoshi, Y.; Kubota, M.; Wakasugi, J.; Takemoto, K.; Kanamura, K.; Abe, H. Li-ion conducting glass ceramic (LICGC)/reduced graphene oxide sandwich-like structure composite for high-performance lithium-ion batteries. J. Power Sources 2021, 500, 229976. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Chen, Y.W.; Tan, T.H.; Lee, H.V.; Abd Hamid, S.B. Easy fabrication of highly thermal-stable cellulose nanocrystals using Cr(No3)3 catalytic hydrolysis system: A feasibility study from macroto nano-dimensions. Materials 2017, 10, 42. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, T.; Makarem, M.; Cintrón, M.S.; Cheng, H.N.; Kang, X.; Bacher, M.; Potthast, A.; Rosenau, T.; King, H.; et al. Effects of ball milling on the structure of cotton cellulose. Cellulose 2019, 26, 305–328. [Google Scholar] [CrossRef]
- Rashidian, E.; Babaeipour, V.; Chegeni, A.; Khodamoradi, N.; Omidi, M. Synthesis and characterization of bacterial cellulose/graphene oxide nano-biocomposites. Polym. Compos. 2021, 42, 4698–4706. [Google Scholar] [CrossRef]
- Tienne, L.G.P.; Candido, L.S.; Cruz, B.S.M.; Gondim, F.F.; Ribeiro, M.P.; Sim~ao, R.A.; Marques, M.F.V.M.; Monteiro, S.N. Reduced graphene oxide synthesized by a new modified Hummer’s method for enhancing thermal and crystallinity properties of Poly(vinylidene fluoride). J. Mater. Res. Technol. 2022, 18, 4871–4893. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Liu, W.R. Synthesis and characterization of nitrogen-doped graphene nanosheets/copper composite film for thermal dissipation. Carbon 2017, 118, 1–12. [Google Scholar] [CrossRef]
- Lin, P.; Cong, Y.; Sun, C.; Zhang, B. Non-covalent modification of reduced grapheme oxide by a chiral liquid crystalline surfactant. Nanoscale-R. Soc. Chem. 2016, 8, 2403–2411. [Google Scholar] [CrossRef]
- El-Desoky, M.M.; Abdulrazek, M.M.; Sharaby, Y.A. Characterization and optical properties of reduced grapheme oxide doped nano-crystalline vanadium pentoxide. Opt. Quantum Electron. 2020, 52, 315. [Google Scholar] [CrossRef]
- Dutta, K.; Das, K.; Chakrabarti, K.; Jana, D.; De, S.K. Highly efficient photocatalytic activity of CuO quantum dot decorated rGO nanocomposites. J. Phys. D Appl. Phys. 2016, 49, 315107. [Google Scholar] [CrossRef] [Green Version]
- Dandia, A.; Bansal, S.; Sharma, R.; Rathore, K.S.; Parewa, V. Microwave-assisted nanocatalysis: A CuO NPs/rGO composite as an efficient and recyclable catalyst for the Petasis-borono–Mannich reaction. RSC Adv. 2018, 8, 30280–30288. [Google Scholar] [CrossRef]
- Alemdar, A.; Sain, M. Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour. Technol. 2008, 99, 1664–1671. [Google Scholar] [CrossRef]
- Sahu, K.K.; Raj, B.; Basu, S.; Mohapatra, M. Calcination Strategy for Scalable Synthesis of Pithecellobium-Type Hierarchical Dual-Phase Nanostructured CuxO to Columnar Self-Assembled CuO and Its Electrochemical Performances. ACS Omega 2021, 6, 1108–1118. [Google Scholar] [CrossRef]
- Rousta, M.; Khalili, D.; Nezhad, A.K.; Ebrahimi, E. CuO-decorated magnetite-reduced grapheme oxide: A robust and promising heterogeneous catalyst for the oxidative amidation of methylarenes in water via benzylic sp3 C–H activation. New J. Chem. 2021, 45, 20007–20020. [Google Scholar] [CrossRef]
- Ju, X.; Bowden, M.; Brown, E.E.; Zhang, X. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr. Polym. 2015, 123, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, A.; Höhne, G.W.H.; Misture, S.T.; Graeve, O.A. A method to quantify crystallinity in amorphous metal alloys: A differential scanning calorimetry study. PLoS ONE 2020, 15, e0234774. [Google Scholar]
- Lunardi, C.N.; Gomes, A.J.; Rocha, F.S.; Tommaso, J.D.; Gregory, S. Patience, Experimental methods in chemical engineering: Zeta Potential. Can. J. Chem. Eng. 2021, 99, 627–639. [Google Scholar] [CrossRef]
- Kusmono; Listyanda, R.F.; Wildan, M.W.; Ilman, M.N. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon 2020, 6, e05486–e05497. [Google Scholar] [CrossRef] [PubMed]
- Barbash, V.A.; Yaschenko, O.V.; Shniruk, O.M. Preparation and Properties of Nanocellulose from Organosolv Straw Pulp. Nanoscale Res. Lett. 2017, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2013, 21, 885–896. [Google Scholar] [CrossRef]
- Kagarzadeh, H.; Ahmad, I.; Abdullah, I.; Dufrense, A.; Zainuddin, S.; Sheltami, R. Effects of hydrolysis condition on the morphology, crystalinity and thermal stability of cellulose nanocrystals extracted from kenal bast fibers. Cellulose 2012, 19, 855–866. [Google Scholar] [CrossRef]
- Kian, L.K.; Jawaid, M.; Ariffin, H.; Karim, Z. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int. J. Biol. Macromol. 2018, 114, 54–63. [Google Scholar] [CrossRef]
- Al-Dulaimi, A.A.; Wanrosli, W.D. Isolation and characterization of nanocrystalline cellulose from totally chlorine free oil palm empty fruit bunch pulp. J. Polym. Environ. 2017, 25, 192–202. [Google Scholar] [CrossRef]
- Mahjouri, S.; Movafeghi, A.; Divband, B.; Kosari-Nasab, M. Toxicity impacts of chemically and biologically synthesized CuO nanoparticles on cell suspension cultures of Nicotiana tabacum. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 135, 223–234. [Google Scholar] [CrossRef]
- Hassan, S.A.; Ghadam, P.; Ali, A.A. One step green synthesis of Cu nanoparticles by the aqueous extract of Juglans regia green husk: Assessing its physicochemical, environmental and biological activities. Bioprocess Biosyst. Eng. 2022, 45, 605–618. [Google Scholar] [CrossRef]
- Yu, Y.; Fei, Z.; Cui, J.; Miao, B.; Lu, Y.; Wu, J. Biosynthesis of Copper Oxide Nanoparticles and Their in vitro Cytotoxicity towards Nasopharynx Cancer (KB Cells) Cell Lines. Int. J. Pharmacol. 2018, 14, 609–614. [Google Scholar] [CrossRef]
- Shinde, A.B.; Mhamane, D.A.; Nishandar, S.V. Experimental investigation of rheological properties of water lubricant by adding CuO nano particles. AIP Conf. Proc. 2019, 2200, 020068. [Google Scholar]
- Małolepszy, A.; Błonski, S.; Chrzanowska-Giżyńska, J.; Wojasiński, M.; Płocinski, T.; Stobinski, L.; Szymanski, Z. Fluorescent carbon and graphene oxide nanoparticles synthesized by the laser ablation in liquid. Appl. Phys. A 2018, 124, 282. [Google Scholar] [CrossRef]
- Muthuvel, A.; Jothibas, M.; Manoharan, C. Synthesis of copper oxide nanoparticles by chemical and biogenic methods: Photocatalytic degradation and in vitro antioxidant activity. Nanotechnol. Environ. Eng. 2020, 5, 14. [Google Scholar] [CrossRef]
- Liu, Y.; Ying, Y.; Mao, Y.; Gu, L.; Wangb, Y.; Peng, X. CuO nanosheets/rGO hybrid lamellar films with enhanced capacitance. Nanoscale 2013, 5, 9134–9140. [Google Scholar] [CrossRef]
- Gao, Y.; He, Y.; Yan, S.; Yu, H.; Ma, J.; Hou, R.; Fan, Y.; Yin, X. Controlled reduction and fabrication of graphene oxide membrane for improved permeance and water purification performance. J. Mater. Sci. 2020, 55, 15130–15139. [Google Scholar] [CrossRef]
- Sudhakar, Y.N.; Hemant, H.; Nitinkumar, S.S.; Poornesh, P.; Selvakumar, M. Green synthesis and electrochemical characterization of rGO–CuO nanocomposites for supercapacitor applications. Ionics 2016, 23, 1267–1276. [Google Scholar] [CrossRef]
- Sarkar, C.; Dolu, S.K. Synthesis of copper oxide/reduced graphene oxide nanocomposite and its enhanced catalytic activity towards reduction of 4-nitrophenol. R. Soc. Chem. RSC Adv. 2015, 5, 60763–60769. [Google Scholar] [CrossRef]
- Zhou, R.; Zheng, Y.; Hulicova-Jurcakova, D.; Qiao, S.Z. Enhanced electrochemical catalytic activity by copper oxide grown on nitrogen-doped reduced graphene oxide. J. Mater. Chem. A 2013, 1, 13179–13185. [Google Scholar] [CrossRef]
- Du, X.; Zhang, Y.; Si, F.; Yao, C.; Du, M.; Hussain, I.; Kim, H.; Huang, S.; Lin, Z.; Hayat, W. Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: Reduced graphene oxide-assisted and CuO (0 0 1) facet-dependent. Chem. Eng. J. 2018, 356, 178–189. [Google Scholar] [CrossRef]
- Gulati, U.; Rajesh, U.C.; Rawat, D.S. RGO@CuO nanocomposites from a renewable copper mineral precursor: A green approach for decarboxylative C(sp3)-H activation of proline amino acid to afford value-added synthons. ACS Sustain. Chem. Eng. 2018, 6, 10039–10051. [Google Scholar] [CrossRef]
- Botsa, S.M.; Basavaiah, K. Removal of Nitrophenols from wastewater by monoclinic CuO/RGO nanocomposite. Nanotechnol. Environ. Eng. 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Sagadevan, S.; Chowdhury, Z.Z.; Bin Johan, M.R.; Aziz, F.A.; Salleh, E.M.; Hawa, A.; Rafique, R.F. A one-step facile route synthesis of copper oxide/reduced graphene oxide nanocomposite for supercapacitor applications. J. Exp. Nanosci. 2018, 13, 284–296. [Google Scholar] [CrossRef]
- Abulizi, A.; Yang, G.-H.; Zhu, J.-J. One-step simple sonochemical fabrication and photocatalytic properties of Cu2O–rGO composites. Ultrason. Sonochem. 2014, 21, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Sagadevan, S.; Lett, J.A.; Weldegebrieal, G.K.; Garg, S.; Oh, W.C.; Hamizi, N.A.; Johan, M.R. Enhanced photocatalytic activity of rgo-cuo nanocomposites for the degradation of organic pollutants. Catalysts 2021, 11, 1008. [Google Scholar] [CrossRef]
- Alves, D.C.B.; Silva, R.; Voiry, D.; Asefa, T.; Chhowalla, M. Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction. Mater. Renew. Sustain. Energy 2015, 4, 2. [Google Scholar] [CrossRef]
- Alhumaimess, M.S.; Alsohaimi, I.H.; Alshammari, H.M.; Aldosari, O.F.; Hassan, H.M.A. Synthesis of gold and palladium nanoparticles supported on CuO/rGO using imidazolium ionic liquid for CO oxidation. Res. Chem. Intermed. 2020, 46, 5499–5516. [Google Scholar] [CrossRef]
- Johra, F.T.; Jung, W.-G. Effect of pH on the synthesis and characteristics of RGO–CdS nanocomposites. Appl. Surf. Sci. 2014, 317, 1015–1021. [Google Scholar] [CrossRef]
- Ghayeb, Y.; Momeni, M.M.; Menati, M. Reduced graphene oxide/Cu2O nanostructure composite films as an effective and stable hydrogen evolution photocathode for water splitting. J. Mater. Sci. Mater. Electron. 2017, 28, 7650–7659. [Google Scholar] [CrossRef]
- Momeni, M.M.; Nazari, Z.; Hakimiyan, M.; Mirhoseini, S.M. Preparation of CuO nanostructures coating on copper as supercapacitor materials. Surf. Eng. 2014, 30, 775–778. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Zhao, W.; Zhao, C.; Wanga, Y.; Zhiqun Lin, Z. A facile route to the synthesis of reduced graphene oxide-wrapped octahedral Cu2O with enhanced photocatalytic and photovoltaic performance. J. Mater. Chem. A 2015, 3, 19148–19154. [Google Scholar] [CrossRef]
- Hontoria-Lucas, C.; Lopez-Peinado, A.J.; Lopez-Gonzalez, J.d.D.; Rojas-Cervantes, M.L.; Martin-Aranda, R.M. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon 1995, 33, 1585–1592. [Google Scholar] [CrossRef]
- Meshram, S.P.; Adhyapak, P.V.; Mulik, U.P.; Amalnerkar, D.P. Facile synthesis of CuO nanomorphs and their morphology dependent sunlight driven photocatalytic properties. Chem. Eng. J. 2012, 204–206, 158–168. [Google Scholar] [CrossRef]
- Papadimitropoulos, G.; Vourdas, N.; Vamvakas, V.E.; Davazoglou, D. Optical and structural properties of copper oxide thin films grown by oxidation of metal layers. Thin Solid Films 2006, 515, 2428–2432. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, L.; Yao, Y.; Hildreth, O. Superior capacitance of functionalized grapheme. J. Phys. Chem. C 2011, 115, 7120–7125. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, J.; Chen, Y. An Overview of the Applications of Graphene-Based Materials in Supercapacitors. Small 2012, 8, 1805–1834. [Google Scholar] [CrossRef]
- Aghamohammadi, H.; Hassanzadeh, N.; Eslami-Farsani, R. A review study on the recent advances in developing the heteroatom-doped graphene and porous graphene as superior anode materials for Li-ion batteries. Ceram. Int. 2021, 47, 22269–22301. [Google Scholar] [CrossRef]
- Harilal, M.; Vidyadharan, B.; Misnon, I.I.; Anilkumar, G.M.; Lowe, A.; Ismail, J.; Yusoff, M.M.; Jose, R. One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors. Am. Chem. Soc. 2017, 9, 10730–10742. [Google Scholar] [CrossRef]
- Jouda, A.M.; Abood, E.S.; Mashloor, M.S. Copper metal at new CuO nanoparticles modified carbonpaste electrode: Selective voltammetric determination. Nano Biomed. Eng. 2018, 10, 243–249. [Google Scholar] [CrossRef]
- Dubal, D.P.; Chodankar, N.R.; Gund, G.S.; Holze, R.; Lokhande, C.D.; Romero, P.G. Asymmetric supercapacitors based on hybrid CuO@reduced graphene oxide@sponge versus reduced graphene oxide@sponge electrodes. Energy Technol. 2015, 3, 168–176. [Google Scholar] [CrossRef]
- Sridevi, A.; Balraj, B.; Senthilkumar, N.; Venkatesan, G.K.D. Synthesis of rGO/CuO/Ag ternary nanocomposites via hydrothermal approach for opto-electronics and supercapacitor applications. J. Supercond. Nov. Magn. 2020, 33, 3501–3510. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, W.; Tang, W.; Xie, Y.; Li, Y.; Song, J.; Zhuiykov, S.; Hu, J.; Gong, W. Synthesis and electrochemistry performance of CuO-functionalized CNTs-rGO nanocomposites for highly sensitive hydrazine detection. Ionics 2020, 26, 2599–2609. [Google Scholar] [CrossRef]
- Subramani, K.; Jeyakumar, D.; Sathish, M. Manganese hexacyanoferrate derived Mn3O4 nanocubes–reduced graphene oxide nanocomposites and their charge storage characteristics in supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 4952. [Google Scholar] [CrossRef] [PubMed]
2ϴ | Height (cts) | d-Spacing [Å] | Rel. Int. (%) | Crystallite Size (Å) | Micro Strain (%) |
---|---|---|---|---|---|
22.2031 | 18.98 | 4.00386 | 4.67 | 18.114320 | 11.051640 |
43.5865 | 406.66 | 2.07655 | 100.00 | 225.185600 | 0.461075 |
50.7050 | 178.42 | 1.80047 | 43.87 | 321.417400 | 0.280083 |
74.3729 | 100.20 | 1.27552 | 24.64 | 365.982900 | 0.174259 |
% rGO | Ic% (rGO) |
---|---|
0.125 | 86.94% |
0.25 | 85.27% |
0.5 | 83.502% |
0.75 | 81.55% |
1.0 | 79.60% |
Temp. °C | Method A | Method B | ||||
---|---|---|---|---|---|---|
Ic% (rGO) | Ic% (CuO) | Ic% (rGO/CuO) | Ic% (rGO) | Ic% (CuO) | Ic% (rGO/CuO) | |
20 | 79.6% | 95.33% | 85.88% | 67.66 | 81.98 | 73.43 |
300 | 81.1 | 93.87 | 86.12 | 68.94 | 80.73 | 73.63 |
350 | 83.7 | 92.85 | 87.87 | 71.15 | 79.85 | 75.13 |
400 | 84.20 | 91.83 | 88.48 | 71.57 | 78.97 | 75.65 |
450 | 85.45 | 91.09 | 89.13 | 72.63 | 78.34 | 76.21 |
500 | 86.25 | 90.61 | 89.42 | 73.31 | 77.92 | 76.45 |
Test Period min | Method A | Method B | ||||
---|---|---|---|---|---|---|
Ic% (rGO) | Ic% (CuO) | Ic% (rGO/CuO) | Ic% (rGO) | Ic% (CuO) | Ic% (rGO/CuO) | |
01 | 79.6% | 95.33% | 85.88% | 66.07 | 79.12 | 71.28% |
06 | 75.85 | 89.7 | 87.23 | 62.88 | 74.451 | 72.84 |
12 | 73.06 | 87.98 | 83.13 | 60.64 | 73.02 | 68.99 |
18 | 71.48 | 86.11 | 81.49 | 59.33 | 71.47 | 67.64 |
24 | 69.55 | 85.64 | 78.46 | 57.73 | 71.08 | 65.12 |
30 | 65.23 | 84.23 | 75.68 | 54.14 | 69.91 | 62.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, A.K.; Abo-Dief, H.M.; Alothman, Z.A.; Mohamed, A.T.; Pramanik, T.; Fallata, A.M. Effect of rGO wt.% on the Preparation of rGO/CuO Nanocomposites at Different Test Periods and Temperatures. Crystals 2022, 12, 1325. https://doi.org/10.3390/cryst12101325
Alanazi AK, Abo-Dief HM, Alothman ZA, Mohamed AT, Pramanik T, Fallata AM. Effect of rGO wt.% on the Preparation of rGO/CuO Nanocomposites at Different Test Periods and Temperatures. Crystals. 2022; 12(10):1325. https://doi.org/10.3390/cryst12101325
Chicago/Turabian StyleAlanazi, Abdullah K., Hala M. Abo-Dief, Zaid A. Alothman, Ashraf T. Mohamed, Tanay Pramanik, and Ahmed M. Fallata. 2022. "Effect of rGO wt.% on the Preparation of rGO/CuO Nanocomposites at Different Test Periods and Temperatures" Crystals 12, no. 10: 1325. https://doi.org/10.3390/cryst12101325
APA StyleAlanazi, A. K., Abo-Dief, H. M., Alothman, Z. A., Mohamed, A. T., Pramanik, T., & Fallata, A. M. (2022). Effect of rGO wt.% on the Preparation of rGO/CuO Nanocomposites at Different Test Periods and Temperatures. Crystals, 12(10), 1325. https://doi.org/10.3390/cryst12101325