Solution-Processable Growth and Characterization of Dandelion-like ZnO:B Microflower Structures
Abstract
:1. Introduction
2. Materials and Methods
- A. Film Synthesis
- B. Possible Growth Mechanism of ZnO Thin Films
3. Results and Discussion
3.1. Crystallographic Properties of the Pure and B-Doped ZnO Films
3.2. X-ray Photoelectron Spectroscopy Study
3.3. Raman Spectroscopy Study
3.4. Scanning Electron Microscopy Study
3.5. Atomic Force Microscopy Study
3.6. Optical Properties
3.7. Electrical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharmin, M. Characterization of Boron Doped Zinc Oxide Thin Films Prepared by Spray Pyrolysis deposition Technique; Department of Physics, Bangladesh University of Engineering and Technology: Dhaka, Bangladesh, 2015; p. 135. [Google Scholar]
- Hurma, T. Effect of boron doping concentration on structural optical electrical properties of nanostructured ZnO films. J. Mol. Struct. 2019, 1189, 1–7. [Google Scholar] [CrossRef]
- Hur, J.; Kim, J.; Jang, S.; Song, J.; Byun, D. Growth of Boron-Doped-ZnO by RF Magnetron Sputtering for CIGS Solar Cells. Chang-Sik Son. 2008, 53, 442–445. [Google Scholar] [CrossRef]
- Myong, S.Y.; Steinhauser, J.; Schlüchter, R.; Faÿ, S.; Vallat-Sauvain, E.; Shah, A.; Ballif, C.; Rüfenacht, A. Temperature dependence of the conductivity in large-grained boron-doped ZnO films. Sol. Energy Mater. Sol. Cells 2007, 91, 1269–1274. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, H.; Kim, D.Y.; Kim, S.O.; Leem, J.Y. Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol-gel dip-coating method. Opt. Mater. 2013, 35, 2418–2424. [Google Scholar] [CrossRef]
- Peng, Y.C.; Chen, C.C.; Wu, H.C.; Lu, J.H. First-principles calculations of electronic structure and optical properties of Boron-doped ZnO with intrinsic defects. Opt. Mater. 2015, 39, 34–39. [Google Scholar] [CrossRef]
- Senol, S.D.; Ozturk, O.; Terzioğlu, C. Effect of boron doping on the structural, optical and electrical properties of ZnO nanoparticles produced by the hydrothermal method. Ceram. Int. 2015, 41, 11194–11201. [Google Scholar] [CrossRef]
- Jana, S.; Vuk, A.S.; Mallick, A.; Orel, B.; Biswas, P.K. Effect of boron doping on optical properties of sol-gel based nanostructured zinc oxide films on glass. Mater. Res. Bull. 2011, 46, 2392–2397. [Google Scholar] [CrossRef]
- Núñez-Salas, R.E.; Hernández-Ramírez, A.; Hinojosa-Reyes, L.; Guzmán-Mar, J.L.; Villanueva-Rodríguez, M.; de Maya-Treviño, M.L. Cyanide degradation in aqueous solution by heterogeneous photocatalysis using boron-doped zinc oxide. Catal. Today 2019, 328, 202–209. [Google Scholar] [CrossRef]
- Rakhshani, A.E. Boron-doped ZnO films grown by successive chemical solution deposition. J. Phys. D Appl. Phys. 2008, 41, 015305. [Google Scholar] [CrossRef]
- Tahar, R.B.H.; Tahar, N.B.H. Boron-doped zinc oxide thin films prepared by sol-gel technique. J. Mater. Sci. 2005, 40, 5285–5289. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.P.; Xu, J.W.; Wang, H. Deposition and characterization of boron doped ZnO thin films by ultrasonic spray pyrolysis method. Appl. Mech. Mater. 2014, 475–476, 1280–1283. [Google Scholar] [CrossRef]
- Kim, S.; Park, H.; Nam, G.; Yoon, H.; Kim, J.S.; Soo, J. Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods. Bull. Korean Chem. Soc. 2013, 34, 3335–3339. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Chakraborty, M.; Thangavel, R.; Udayabhanu, G. Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications. J. Sol-Gel. Sci. Technol. 2018, 85, 1–11. [Google Scholar] [CrossRef]
- Kahraman, S.; Çakmak, H.M.; Çetinkaya, S.; Çetinkara, H.A.; Güder, H.S. CBD grown ZnO nanostructures: Effects of solution temperature. Int. J. Mater. Res. 2013, 104, 799–804. [Google Scholar] [CrossRef]
- Çakmak, H.M.; Kahraman, S.; Bayansal, F.; Çetinkaya, S. A novel study on ZnO nanostructures: Coumarin effect. Philos. Mag. Lett. 2012, 92, 288–294. [Google Scholar] [CrossRef]
- Mwankemwa, B.S.; Nambala, F.J.; Kyeyune, F.; Hlatshwayo, T.T.; Nel, J.M.; Diale, M. Influence of ammonia concentration on the microstructure, electrical and raman properties of low temperature chemical bath deposited ZnO nanorods. Mater. Sci. Semicond. Process. 2017, 71, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.J.; Chen, C.H.; Wu, K.Y.; Fan, C.M.; Wu, C.L.; Huang, C.F.; Chen, C.H.; Hwang, J.C. Improvement of optical and electrical properties of Boron-doped ZnO films by ITO buffer layers for photovoltaic application. J. Taiwan Inst. Chem. Eng. 2014, 45, 3016–3020. [Google Scholar] [CrossRef]
- Sharma, A.; Chakraborty, M.; Thangavel, R. Investigations on photoelectrochemical performance of boron doped ZnO nanorods synthesized by facile hydrothermal technique. AIP Conf. Proc. 2018, 1953, 100027. [Google Scholar] [CrossRef]
- Kahraman, S.; Çakmak, H.M.; Çetinkaya, S.; Bayansal, F.; Çetinkara, H.A.; Güder, H.S. Characteristics of ZnO thin films doped by various elements. J. Cryst. Growth 2013, 363, 86–92. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Y.; Ma, Y.; Li, B.; Tang, K.; Shi, H.; Gou, S.; Zou, T.; Wang, L.; Lu, Y. B-doping and annealing on the properties of B and Ga co-doped ZnO films. Surf. Coat. Technol. 2019, 358, 223–227. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, L.; Li, Y.; Zhang, X.; Niu, W.; Guo, Y.; Ye, Z. Highly conductive thin films of nonmetal F and B co-doped ZnO on flexible substrates: Experiment and first-principles calculations. J. Alloys Compd. 2017, 697, 156–160. [Google Scholar] [CrossRef]
- Yıldırımcan, S.; Erat, S. Comparison of effect of nickel concentration on crystallographic structure and morphology of zinc oxide nanopowders. Turk. J. Eng. 2019, 3, 34–50. [Google Scholar] [CrossRef]
- Erat, S.; Yıldırımcan, S. Investigation of oxygen-related defects in ZnO: Growing time and mn concentration effects. Turk. J. Eng. 2019, 3, 68–75. [Google Scholar] [CrossRef]
- Erat, S.; Ozkendir, O.M.; Yildirimcan, S.; Gunaydin, S.; Harfouche, M.; Demir, B.; Braun, A. Study on crystallographic and electronic structure of micrometre-scale ZnO and ZnO:B rods via X-ray absorption fine-structure spectroscopy. J. Synchrotron Rad. 2021, 28, 448–454. [Google Scholar] [CrossRef]
- Yildirimcan, S.; Ocakoglu, K.; Erat, S.; Emen, F.M.; Repp, S.; Erdem, E. The effect of growing time and Mn concentration on the defect structure of ZnO nanocrystals: X-ray diffraction, infrared and EPR spectroscopy. RSC Adv. 2016, 6, 39511–39521. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, Y.; Du, G.; Chen, N.; Liu, S.; Wang, S.; Huang, H.; Lu, C.; Niu, X. Enhanced electrical and optical properties of boron-doped ZnO films grown by low pressure chemical vapor deposition for amorphous silicon solar cells. Ceram. Int. 2016, 42, 1361–1365. [Google Scholar] [CrossRef]
- Zou, T.; Huang, J.; Hu, Y.; Tang, K.; Zhang, Z.; Zhou, X.; Shen, Y.; Zhang, J.; Wang, L.; Lu, Y. CdZnTe thick film radiation detectors with B and Ga co-doped ZnO contacts. Surf. Coat. Technol. 2019, 360, 64–67. [Google Scholar] [CrossRef]
- Mahmood, K.; Sung, H.J. A dye-sensitized solar cell based on a boron-doped ZnO (BZO) film with double light-scattering-layers structured photoanode. J. Mater. Chem. A 2014, 2, 5408–5417. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, S.; Nam, G.; Lee, D.Y.; Leem, J.Y. Effects of growth temperature for buffer layers on properties of ZnO thin films grown on porous silicon by plasma-assisted molecular beam epitaxy. Opt. Mater. 2012, 34, 1543–1548. [Google Scholar] [CrossRef]
- Mosnier, J.P.; O’Haire, R.J.; McGlynn, E.; Henry, M.O.; McDonnell, S.J.; Boyle, M.A.; McGuigan, K.G. ZnO films grown by pulsed-laser deposition on soda lime glass substrates for the ultraviolet inactivation of Staphylococcus epidermidis biofilms. Sci. Technol. Adv. Mater. 2009, 10, 045003–045013. [Google Scholar] [CrossRef] [PubMed]
- Godlewski, M.; Guziewicz, E.; Łuka, G.; Krajewski, T.; Łukasiewicz, M.; Wachnicka, A.; Kopalko, K.; Sarem, A.; Dalati, B. ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide. Thin Solid Film. 2009, 518, 1145–1148. [Google Scholar] [CrossRef]
- Sundaram, K.B.; Khan, A. Characterization and optimization of zinc oxide films by r.f. magnetron sputtering. Thin Solid Film. 1997, 295, 87–91. [Google Scholar] [CrossRef]
- Taunk, P.B.; Das, R.; Bisen, D.P.; Tamrakar, R.K.; Rathor, N. Synthesis and optical properties of chemical bath deposited ZnO thin film. Karbala Int. J. Mod. Sci. 2015, 1, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.Y.; Kim, S.O.; Kim, M.S.; Yim, K.G.; Leem, J.Y.; Kim, S.; Nam, G.; Lee, D.Y. Hydrothermal growth and properties of rod-like ZnO submicron crystals on Al-doped ZnO seed layers with different Al concentrations. J. Korean Phys. Soc. 2012, 60, 94–98. [Google Scholar] [CrossRef]
- Kim, M.S.; Yim, K.G.; Kim, S.; Nam, G.; Leem, J.Y. White light emission from nano-fibrous ZnO thin films/porous silicon nanocomposite. J. Sol-Gel. Sci. Technol. 2011, 59, 364–370. [Google Scholar] [CrossRef]
- Lee, S.H.; So, W.; Jung, J.H.; Nam, G.; Park, H.; Yoon, H.; Kim, B.G.; Park, S.H.; Kim, S.; Kim, M.S.; et al. Effects of precursor concentrations on ZnO nano-fibrous thin films grown by using the sol-gel dip-coating method. J. Korean Phys. Soc. 2012, 61, 1925–1931. [Google Scholar] [CrossRef]
- Ge, C.; Xie, C.; Cai, S. Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2007, 137, 53–58. [Google Scholar] [CrossRef]
- Singh, V.M.; Hojamberdiev, B.; Kumar, M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 2020, 6, 46–62. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomaterials 2020, 10, 1086. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Zhang, J.-M.; Xu, K.-W. Boron doped ZnO thin films fabricated by RF-magnetron sputtering. Appl. Surf. Sci. 2011, 125, 2498–2502. [Google Scholar] [CrossRef]
- Sushama, S.; Murkute, P.; Ghadi, H.; Pandey, S.K.; Chakrabarti, S. Enhancement in structural, elemental and optical properties of boron–phosphorus Co-doped ZnO thin films by high-temperature annealing. J. Lumin. 2021, 238, 118221. [Google Scholar] [CrossRef]
- Eskalen, H.; Kavun, Y.; Kerli, S.; Eken, S. An investigation of radiation shielding properties of boron doped ZnO thin films. Opt. Mater. 2020, 105, 109871. [Google Scholar] [CrossRef]
- Rakhsha, A.H.; Abdizadeh, H.; Pourshaban, E.; Golobostanfard, M.R.; Mastelaro, V.R.; Montazerian, M. Ag and Cu Doped ZnO Nanowires: A pH-Controlled Synthesis via Chemical Bath Deposition. Materialia 2019, 5, 100212–100223. [Google Scholar] [CrossRef]
- Shanmuganathan, G.; Banu, I.B.S.; Krishnan, S.; Ranganathan, B. Influence of K-doping on the optical properties of ZnO thin films grown by chemical bath deposition method. J. Alloys Compd. 2013, 562, 187–193. [Google Scholar] [CrossRef]
- Vijayan, T.A.; Chandramohan, R.; Valanarasu, S.; Thirumalai, J.; Subramanian, S.P. Comparative investigation on nanocrystal structure, optical, and electrical properties of ZnO and Sr-doped ZnO thin films using chemical bath deposition method. J. Mater. Sci. 2008, 43, 1776–1782. [Google Scholar] [CrossRef]
- Chu, Y.-L.; Young, S.-J.; Ji, L.-W.; Chu, T.-T.; Chen, P.-H. Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators. Energies 2020, 13, 2731. [Google Scholar] [CrossRef]
- Suresh Kumar, P.; Dhayal Raj, A.; Mangalaraj, D.; Nataraj, D.; Ponpandian, N.; Li, L.; Chabrol, G. Growth of hierarchical based ZnO micro/nanostructured films and their tunable wettability behavior. Appl. Surf. Sci. 2011, 257, 6678–6686. [Google Scholar] [CrossRef]
- Saravana Kumar, R.; Sathyamoorthy, R.; Matheswaran, P.; Sudhagar, P.; Kang, Y.S. Growth of novel ZnO nanostructures by soft chemical routes. J. Alloys Compd. 2010, 506, 351–355. [Google Scholar] [CrossRef]
- Wang, W.; Ai, T.; Yu, Q. Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET-ITO flexible substrates by hydrothermal method. Sci. Rep. 2017, 7, 42615. [Google Scholar] [CrossRef]
- Bose, S.; Mandal, S.; Barua, A.K.; Mukhopadhyay, S. Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells. J. Mater. Sci. Technol. 2020, 55, 136–143. [Google Scholar] [CrossRef]
- Pandey, V.; Singh, N.; Haque, F.Z. Enhancement in Structural and Optical Properties of Boron Doped ZnO Nanostructures Synthesized by Simple Aqueous Solution Growth Technique. J. Adv. Phys. 2017, 6, 358–366. [Google Scholar] [CrossRef]
- Pauporté, T.; Lincot, D. Electrodeposition of semiconductors for optoelectronic devices: Results on zinc oxide. Electrochim. Acta 2000, 45, 3345–3353. [Google Scholar] [CrossRef]
- Scocca, J.J. Advances in DNA Sequence Specific Agents. J. Am. Chem. Soc. 2003, 125, 6834. [Google Scholar] [CrossRef]
- Shinde, V.R.; Lokhande, C.D.; Mane, R.S.; Han, S.H. Hydrophobic and textured ZnO films deposited by chemical bath deposition: Annealing effect. Appl. Surf. Sci. 2005, 245, 407–413. [Google Scholar] [CrossRef]
- Thool, G.S.; Singh, A.K.; Singh, R.S.; Gupta, A.; Susan, M.A.B.H. Facile synthesis of flat crystal ZnO thin films by solution growth method: A micro-structural investigation. J. Saudi Chem. Soc. 2014, 18, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.H.; Park, B.N.; Lee, S.B.; Boo, J.H. Metal-doped ZnO thin films: Synthesis and characterizations. Surf. Coat. Technol. 2007, 201, 5318–5322. [Google Scholar] [CrossRef]
- Suresh, A.; Chatterjee, K.; Sharma, V.K.; Ganguly, S.; Kargupta, K.; Banerjee, D. Effect of pH on structural and electrical properties of electrodeposited Bi 2Te 3 thin films. J. Electron. Mater. 2009, 38, 449–452. [Google Scholar] [CrossRef]
- Kidalov, V.; Dyadenchuk, A.; Bacherikov, Y.; Zhuk, A.; Gorbaniuk, T.; Rogozin, I.; Kidalov, V. Structural and optical properties of ZnO films obtained on mesoporous Si substrates by the method of HF magnetron sputtering. Turk. J. Phys. 2020, 44, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Vishwakarma, H.L. Study of structural, morphological, optical and electroluminescent properties of undoped ZnO nanorods grown by a simple chemical precipitation. Mater. Sci. Pol. 2015, 33, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Rogozin, I.V.; Kotlyarevsky, M.B. Characteristics of nitrogen-doped p-ZnO thin films and ZnO/ZnSe p-n heterojunctions grown on a ZnSe substrate. Semicond. Sci. Technol. 2008, 23, 085008. [Google Scholar] [CrossRef]
- Fan, J.C.; Sreekanth, K.M.; Xie, Z.; Chang, S.L.; Rao, K.V. P-Type ZnO materials: Theory, growth, properties and devices. Prog. Mater. Sci. 2013, 58, 874–985. [Google Scholar] [CrossRef]
- Gaudon, M.; Toulemonde, O.; Demourgues, A. Green coloration of co-doped ZnO explained from structural refinement and bond Considerations. Inorg. Chem. 2007, 46, 10996–11002. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969, 25, 925–946. [Google Scholar] [CrossRef]
- Shannon, B.Y.R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Cryst. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Goldfarb, I.; Pelleg, J.; Zevin, L.; Croitoru, N. Lattice distortion in thin films of IVB metal (Ti, Zr, Hr) nitrides. Thin Solid Film. 1991, 200, 117–127. [Google Scholar] [CrossRef]
- Beltrán, J.J.; Barrero, C.A.; Punnoose, A. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 15284–15296. [Google Scholar] [CrossRef] [PubMed]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doǧan, S.; Avrutin, V.; Cho, S.J.; Morko̧, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 1–103. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.A.; Alsaad, A.M.; Al-Bataineh, Q.M.; Al-Naafa, M.A. Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl. Phys. A Mater. Sci. Process. 2018, 124, 1–13. [Google Scholar] [CrossRef]
- Gandla, S.; Gollu, S.R.; Sharma, R.; Sarangi, V.; Gupta, D. Dual role of boron in improving electrical performance and device stability of low temperature solution processed ZnO thin film transistors. Appl. Phys. Lett. 2015, 107, 152102–152107. [Google Scholar] [CrossRef]
- Pejova, B.; Tanuševski, A.; Grozdanov, I. Photophysics, photoelectrical properties and photoconductivity relaxation dynamics of quantum-sized bismuth(III) sulfide thin films. J. Solid State Chem. 2005, 178, 1786–1798. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, M.K.R.; Islam, M.R.; Halim, M.A.; Shahjahan, M.; Hakim, M.A.; Saha, D.K.; Khan, J.U. Effect of Al Doping on Structural, Electrical, Optical and Photoluminescence Properties of Nano-Structural ZnO Thin Films. J. Mater. Sci. Technol. 2012, 28, 329–335. [Google Scholar] [CrossRef]
- Yadav, S.C. Synthesis and properties of Boron doped ZnO thin films by spray CVD technique at low substrate temperature. Int. J. Eng. Sci. Technol. 2012, 4, 4893–4898. [Google Scholar]
Sample ID | (100) | (002) | (101) | D (nm) | ε × 10−4 | ρ × 1015 (cm−2) | |||
---|---|---|---|---|---|---|---|---|---|
2Ɵ (deg.) | d (Å) | 2Ɵ (deg.) | d (Å) | 2Ɵ (deg.) | d (Å) | ||||
S0 | 31.752 | 2.8159 | 34.404 | 2.6046 | 36.214 | 2.4785 | 38.54 | 9.54 | 1.18 |
S1 | 31.769 | 2.8144 | 34.419 | 2.6035 | 36.250 | 2.4761 | 39.42 | 9.27 | 1.10 |
S2 | 31.773 | 2.8141 | 34.415 | 2.6038 | 36.246 | 2.4764 | 36.94 | 10.1 | 1.34 |
S3 | 31.712 | 2.8193 | 34.400 | 2.6049 | 36.185 | 2.4804 | 37.05 | 9.97 | 1.29 |
S4 | 31.735 | 2.8173 | 34.382 | 2.6062 | 36.206 | 2.4790 | 37.60 | 9.81 | 1.25 |
S5 | 31.696 | 2.8207 | 34.341 | 2.6092 | 36.235 | 2.4771 | 40.91 | 9.02 | 1.06 |
S6 | 31.748 | 2.8162 | 34.393 | 2.6054 | 36.253 | 2.4759 | 37.45 | 9.80 | 1.24 |
S7 | 31.772 | 2.8141 | 34.418 | 2.6036 | 36.243 | 2.4765 | 34.50 | 10.7 | 1.47 |
Reference [20] | 31.770 | 2.8143 | 34.422 | 2.6033 | 36.253 | 2.4759 | - | - | - |
Sample | Lattice Constant | Length of the Zn-O Bond | Lattice Distortion Degree | 2θ | |||
---|---|---|---|---|---|---|---|
a (Å) | c (Å) | c/a | L (Å) | R | (100) | (002) | |
S0 | 3.2503 | 5.2074 | 1.60212 | 2.284 | 1.0193 | 31.752 | 34.404 |
S1 | 3.2486 | 5.2052 | 1.60227 | 2.282 | 1.0192 | 31.769 | 34.419 |
S2 | 3.2482 | 5.2058 | 1.60265 | 2.283 | 1.0189 | 31.773 | 34.415 |
S3 | 3.2543 | 5.2080 | 1.60033 | 2.286 | 1.0204 | 31.712 | 34.400 |
S4 | 3.2520 | 5.2106 | 1.60227 | 2.285 | 1.0192 | 31.735 | 34.382 |
S5 | 3.2559 | 5.2167 | 1.60221 | 2.288 | 1.0192 | 31.696 | 34.341 |
S6 | 3.2507 | 5.2090 | 1.60242 | 2.284 | 1.0191 | 31.748 | 34.393 |
S7 | 3.2483 | 5.2054 | 1.60247 | 2.283 | 1.0190 | 31.772 | 34.418 |
Sample | Nominal Content | Actual Content | Ov/OM-O | |||
---|---|---|---|---|---|---|
v/v (%) | at% | Zn% | O% | B% | ||
S0 | 0.0 | 0.0 | 35.37 | 64.63 | - | 0.90 |
S1 | 0.1 | 0.13 | 33.29 | 65.89 | 0.82 | 0.86 |
S2 | 0.3 | 0.38 | 39.97 | 58.73 | 1.31 | 0.48 |
S3 | 0.5 | 0.63 | 35.75 | 62.59 | 1.66 | 0.58 |
S4 | 1.0 | 1.25 | 39.24 | 58.89 | 1.88 | 0.42 |
S5 | 3.0 | 3.74 | 38.50 | 58.22 | 3.28 | 0.54 |
S6 | 5.0 | 6.21 | 32.68 | 61.36 | 5.96 | 0.58 |
S7 | 7.0 | 8.64 | 35.70 | 57.97 | 6.33 | 0.62 |
Samples | Rq (nm) | Ra (nm) | Rz (nm) |
---|---|---|---|
S0 | 48 | 112 | 170 |
S1 | 272 | 216 | 431 |
S2 | 158 | 222 | 170 |
S3 | 136 | 209 | 712 |
S4 | 252 | 213 | 793 |
S5 | 365 | 251 | 938 |
S6 | 298 | 244 | 913 |
S7 | 203 | 317 | 918 |
Samples | Low-Temperature Region 273–348 K | High-Temperature Region 348–523 K |
---|---|---|
Activation Energy-1 (AE1) (eV) | Activation Energy-2 (AE2) (eV) | |
S0 | 0.051 | 0.072 |
S1 | 0.088 | 0.117 |
S2 | 0.080 | 0.143 |
S3 | 0.090 | 0.135 |
S4 | 0.013 | 0.058 |
S5 | 0.099 | 0.183 |
S6 | 0.094 | 0.122 |
S7 | 0.034 | 0.083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erat, S.; Braun, A.; Çetinkaya, S.; Yildirimcan, S.; Kasapoğlu, A.E.; Gür, E.; Harputlu, E.; Ocakoglu, K. Solution-Processable Growth and Characterization of Dandelion-like ZnO:B Microflower Structures. Crystals 2022, 12, 11. https://doi.org/10.3390/cryst12010011
Erat S, Braun A, Çetinkaya S, Yildirimcan S, Kasapoğlu AE, Gür E, Harputlu E, Ocakoglu K. Solution-Processable Growth and Characterization of Dandelion-like ZnO:B Microflower Structures. Crystals. 2022; 12(1):11. https://doi.org/10.3390/cryst12010011
Chicago/Turabian StyleErat, Selma, Artur Braun, Samed Çetinkaya, Saadet Yildirimcan, Ahmet Emre Kasapoğlu, Emre Gür, Ersan Harputlu, and Kasım Ocakoglu. 2022. "Solution-Processable Growth and Characterization of Dandelion-like ZnO:B Microflower Structures" Crystals 12, no. 1: 11. https://doi.org/10.3390/cryst12010011
APA StyleErat, S., Braun, A., Çetinkaya, S., Yildirimcan, S., Kasapoğlu, A. E., Gür, E., Harputlu, E., & Ocakoglu, K. (2022). Solution-Processable Growth and Characterization of Dandelion-like ZnO:B Microflower Structures. Crystals, 12(1), 11. https://doi.org/10.3390/cryst12010011