Tunable Bandgaps in Phononic Crystal Microbeams Based on Microstructure, Piezo and Temperature Effects
Abstract
:1. Introduction
2. Formulation
3. Numerical Results
3.1. Validation
3.2. Effects of Piezoelectricity and Piezomagnetism on Bandgap
3.3. Effect of Microstructure (Beam Thickness) on Bandgap
3.4. Effect of Lattice Constant on Bandgap
3.5. Effect of Volume Fraction on Bandgap
3.6. Tunable Bandgap through the External Electric Potential
3.7. Tunable Bandgap through the External Magnetic Potential
3.8. Tunable Bandgap through the Temperature Change
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Yin, R.C.; Fan, T.; Lu, M.H.; Chen, Y.F.; Zhu, Y.Y.; Zhu, S.N.; Ming, N.B. Coupled phonon polaritons in a piezoelectric-piezomagnetic superlattice. Phys. Rev. B-Condens. Matter 2008, 77, 75126. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Li, F.M.; Kishimoto, K.; Wang, Y.S.; Huang, W.H. Elastic wave band gaps in magnetoelectroelastic phononic crystals. Wave Motion 2009, 46, 47–56. [Google Scholar] [CrossRef]
- Matar, O.B.; Robillard, J.F.; Vasseur, J.O.; Hladky-Hennion, A.C.; Deymier, P.A.; Pernod, P.; Preobrazhensky, V. Band gap tunability of magneto-elastic phononic crystal. J. Appl. Phys. 2012, 111, 054901. [Google Scholar] [CrossRef] [Green Version]
- Lan, M.; Wei, P. Band gap of piezoelectric/piezomagnetic phononic crystal with graded interlayer. Acta Mech. 2014, 225, 1779–1794. [Google Scholar] [CrossRef]
- Jiang, S.; Dai, L.; Chen, H.; Hu, H.; Jiang, W.; Chen, X. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap. Appl. Math. Mech.-Engl. Ed. 2017, 38, 411–422. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Wang, T. A Review of Acoustic Metamaterials and Phononic Crystals. Crystals 2020, 10, 305. [Google Scholar] [CrossRef]
- Yuan, L.; Zhao, P.; Ding, Y.; Ding, B.; Du, J.; Ma, T.; Wang, J. Study on Lamb Waves in a Composite Phononic Crystal Plate. Crystals 2020, 10, 799. [Google Scholar] [CrossRef]
- Espo, M.; Abolbashari, M.H.; Hosseini, S.M. Band structure analysis of wave propagation in piezoelectric nano-metamaterials as periodic nano-beams considering the small scale and surface effects. Acta Mech. 2020, 231, 2877–2893. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Zhang, H.; Wang, S. Tunable Low Frequency Band Gap and Waveguide of Phononic Crystal Plates with Different Filling Ratio. Crystals 2021, 11, 828. [Google Scholar] [CrossRef]
- Miranda, E., Jr.; Aranas, C., Jr.; Rodrigues, S.; Cantanhêde, H.; Reis, G.; Paiva, A.; Dos Santos, J. Dispersion Diagram of Trigonal Piezoelectric Phononic Structures with Langasite Inclusions. Crystals 2021, 11, 491. [Google Scholar] [CrossRef]
- Kushwaha, M.S.; Halevi, P.; Martínez, G.; Dobrzynski, L.; Djafari-Rouhani, B. Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 1994, 49, 2313–2322. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L. Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Appl. Phys. Lett. 2014, 105, 191907. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, C.; Qiu, X.; Mi, C. Microstructure-dependent Band Gaps for Elastic Wave Propagation in a Periodic Microbeam Structure. Acta Mech. Solida Sin. 2021, 34, 527–538. [Google Scholar] [CrossRef]
- McFarland, A.W.; Colton, J.S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 2005, 15, 1060–1067. [Google Scholar] [CrossRef]
- Park, S.K.; Gao, X.L. Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 2006, 16, 2355–2359. [Google Scholar] [CrossRef]
- Yang, F. Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations. J. Appl. Phys. 2004, 95, 3516–3520. [Google Scholar] [CrossRef]
- Lam, D.C.C.; Yang, F.; Chong, A.C.M.; Wang, J.; Tong, P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 2003, 51, 1477–1508. [Google Scholar] [CrossRef]
- Ma, H.M.; Gao, X.L.; Reddy, J.N. A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 2011, 220, 217–235. [Google Scholar] [CrossRef]
- Ma, H.M.; Gao, X.L.; Reddy, J.N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 2008, 56, 3379–3391. [Google Scholar] [CrossRef]
- Shaat, M.; Mahmoud, F.F.; Gao, X.L.; Faheem, A.F. Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 2014, 79, 31–37. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Gao, X.L. A non-classical Kirchhoff rod model based on the modified couple stress theory. Acta Mech. 2019, 230, 243–264. [Google Scholar] [CrossRef]
- Hong, J.; Zhang, G.; Wang, X.; Mi, C. A simplified strain gradient Kirchhoff rod model and its applications on microsprings and microcolumns. J. Mech. Mater. Struct. 2020, 15, 203–223. [Google Scholar] [CrossRef]
- Hong, J.; Wang, S.; Zhang, G.; Mi, C. Bending, buckling and vibration analysis of complete microstructure-dependent functionally graded material microbeams. Int. J. Appl. Mech. 2021, 13, 2150057. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Gao, X.L. A non-classical model for first-ordershear deformation circular cylindrical thin shells incorporating microstructure and surface energy effects. Math. Mech. Solids 2021, 26, 1294–1319. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Gao, X.L.; Littlefield, A.G. A non-classical model for circular cylindrical thin shells incorporating microstructure and surface energy effects. Acta Mech. 2021, 232, 2225–2248. [Google Scholar] [CrossRef]
- Eringen, A.C. Nonlocal polar elastic continua. Int. J. Eng. Sci. 1972, 10, 1–16. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Ian Murdoch, A. A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 1975, 57, 291–323. [Google Scholar] [CrossRef]
- Mindlin, R.D. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 1964, 16, 51–78. [Google Scholar] [CrossRef]
- Mindlin, R.D.; Eshel, N.N. On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 1968, 4, 109–124. [Google Scholar] [CrossRef]
- Mindlin, R.D.; Tiersten, H.F. Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 1962, 11, 415–448. [Google Scholar] [CrossRef]
- Koiter, W. Couple stresses in the theory of elasticity, I and II, in: Nederl. Akad.Wetensch. Proc. Ser. B 1964, 67, 17–29. [Google Scholar]
- Yang, F.; Chong, A.C.M.; Lam, D.C.C.; Tong, P. Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 2002, 39, 2731–2743. [Google Scholar] [CrossRef]
- Qian, D. Bandgap properties of a piezoelectric phononic crystal nanobeam based on nonlocal theory. J. Mater. Sci. 2019, 54, 4038–4048. [Google Scholar] [CrossRef]
- Song, X.; Qian, D.; Qi, Y. Studies on calculation method and bandgap properties of a nonlocal piezoelectric phononic crystal nanoplate. Ferroelectrics 2021, 570, 132–144. [Google Scholar] [CrossRef]
- Qian, D. Bandgap properties of a piezoelectric phononic crystal nanobeam with surface effect. J. Appl. Phys. 2018, 124, 055101. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, Y. Flexural wave band structure of magneto-elastic phononic crystal nanobeams based on the nonlocal theory. Phys. Lett. A 2021, 390, 127090. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Gao, X.L.; Bishop, J.E.; Fang, H.E. Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects. Compos. Struct. 2018, 189, 263–272. [Google Scholar] [CrossRef]
- Gao, R.Z.; Zhang, G.Y.; Ioppolo, T.; Gao, X.L. Elastic wave propagation in a periodic composite beam structure: A new model for band gaps incorporating surface energy, transverse shear and rotational inertia effects. J. Micromech. Mol. Phys. 2018, 3, 1840005. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Gao, X.L. Band gaps for flexural elastic wave propagation in periodic composite plate structures based on a non-classical Mindlin plate model incorporating microstructure and surface energy effects. Contin. Mech. Thermodyn. 2019, 31, 1911–1930. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, X.L. Elastic wave propagation in a periodic composite plate structure: Band gaps incorporating microstructure, surface energy and foundation effects. J. Mech. Mater. Struct. 2019, 14, 219–236. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Gao, X.L.; Ding, S.R. Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mech. 2018, 229, 4199–4214. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Gao, X.L. Elastic wave propagation in 3-D periodic composites: Band gaps incorporating microstructure effects. Compos. Struct. 2018, 204, 920–932. [Google Scholar] [CrossRef]
- Nikolov, S.; Han, C.S.; Raabe, D. On the origin of size effects in small-strain elasticity of solid polymers. Int. J. Solids Struct. 2007, 44, 1582–1592. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Y.; Gao, X.L.; Guo, Z.Y. A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mech. 2017, 228, 3811–3825. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Qu, Y.L.; Gao, X.L.; Jin, F. A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects. Mech. Mater. 2020, 149, 103412. [Google Scholar] [CrossRef]
- Vinyas, M.; Kattimani, S.C. Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads. Compos. Struct. 2017, 163, 216–237. [Google Scholar] [CrossRef]
- Pan, E. Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates. J. Appl. Mech. 2001, 68, 608–618. [Google Scholar] [CrossRef]
- Chen, T.; Chiu, M.S.; Weng, C.N. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 2006, 100, 074308. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Jiang, L.Y. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 2011, 22, 245703. [Google Scholar] [CrossRef]
- Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 1929, 52, 555–600. [Google Scholar] [CrossRef]
- Chen, P.; Wang, Y.Z.; Wang, Y.S. Active control of flexural waves in a phononic crystal beam with staggered periodic properties. Wave Motion 2020, 93, 102481. [Google Scholar] [CrossRef]
- Chuang, K.C.; Zhang, Z.Q.; Wang, H.X. Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings. Phys. Lett. A 2016, 380, 3963–3969. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, Z.; Yu, D.; Liu, J.; Zhu, F. Broadband bandgap and shock vibration properties of acoustic metamaterial fluid-filled pipes. J. Appl. Phys. 2020, 128, 205103. [Google Scholar] [CrossRef]
- Miranda, E.J.P.; Dos Santos, J.M.C. Evanescent Bloch waves and complex band structure in magnetoelectroelastic phononic crystals. Mech. Syst. Sig. Process. 2018, 112, 280–304. [Google Scholar] [CrossRef]
Meterial Parameters | ||
---|---|---|
5300 | 5800 | |
286 | 166 | |
15.366 | 8.134 | |
9.295 | 3.773 | |
0 | −4.4 | |
0.093 | 12.6 | |
580.3 | 0 | |
157 | 10 | |
0 | 0 | |
10 | 15.7 |
Bandgap Size (kHz) | ||
---|---|---|
Current Model | Classical Model | |
0 | 0 | 0 |
10 | 173.99 | 131.08 |
20 | 347.14 | 165.44 |
30 | 507.5 | 392.57 |
40 | 634.74 | 499.07 |
50 | 711.86 | 569.63 |
60 | 722.67 | 588.9 |
70 | 656.09 | 544.64 |
80 | 508.63 | 430.46 |
90 | 285.18 | 246.47 |
100 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.; He, Z.; Zhang, G.; Mi, C. Tunable Bandgaps in Phononic Crystal Microbeams Based on Microstructure, Piezo and Temperature Effects. Crystals 2021, 11, 1029. https://doi.org/10.3390/cryst11091029
Hong J, He Z, Zhang G, Mi C. Tunable Bandgaps in Phononic Crystal Microbeams Based on Microstructure, Piezo and Temperature Effects. Crystals. 2021; 11(9):1029. https://doi.org/10.3390/cryst11091029
Chicago/Turabian StyleHong, Jun, Zhuangzhuang He, Gongye Zhang, and Changwen Mi. 2021. "Tunable Bandgaps in Phononic Crystal Microbeams Based on Microstructure, Piezo and Temperature Effects" Crystals 11, no. 9: 1029. https://doi.org/10.3390/cryst11091029
APA StyleHong, J., He, Z., Zhang, G., & Mi, C. (2021). Tunable Bandgaps in Phononic Crystal Microbeams Based on Microstructure, Piezo and Temperature Effects. Crystals, 11(9), 1029. https://doi.org/10.3390/cryst11091029