Amino Acid Substitutions in the Non-Ordered Ω-Loop 70–85 Affect Electron Transfer Function and Secondary Structure of Mitochondrial Cytochrome c
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of the Mutant Genes of Cytochrome c
2.2. Expression of the Mutant Genes of Cytochrome c, Proteins Isolation, and Purification
2.3. Preparation of Mitoplasts without Cytochrome c
2.4. Measurement of the Succinate:Cytochrome c-Reductase and Cytochrome c-Oxidase Activities of the Mitoplasts
2.5. Calculation of the Kinetic Parameters of the Reactions
2.6. CD Spectroscopy
2.7. 1H-NMR Spectroscopy
2.8. IR Spectroscopy of Mutant Cytochrome c
3. Results and Discussion
3.1. Kinetic Parameters Succinate Cytochrome c-Reductase and Cytochrome c-Oxidase Reactions
3.2. The CD Spectra of Cytochrome c and Its Mutant Forms
3.3. The 1H-NMR Spectra of Oxidized Cytochrome c and Its Mutant Forms
3.3.1. 1H-NMR Spectra of Cytochrome c Protein
3.3.2. 1H-NMR Spectra of Cytochrome c Hematoporphyrin
3.4. The IR Spectra of Cytochrome c and Its Mutant Forms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.J.; Khalimonchuk, O.; Smith, P.M.; Winge, D.R. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochim. Biophys Acta 2012, 1823, 1604–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banci, L.; Bertini, I.; Gray, H.B.; Luchinat, C.; Reddig, T.; Rosato, A.; Turano, P. Solution structure of oxidized horse heart cytochrome c. Biochemistry 1997, 36, 9867–9877. [Google Scholar] [CrossRef] [Green Version]
- Takano, T.F.; Dickerson, R.E. Conformation change of cytochrome c. I. Ferrocytochrome c structure refined at 1.5 A resolution. J. Mol. Biol. 1981, 153, 79–94. [Google Scholar] [CrossRef]
- Calvert, J.F.; Hill, J.L.; Dong, A. Redox-dependent conformational changes are common structural features of cytochrome c from various species. Arch Biochem. Biophys. 1997, 346, 287–293. [Google Scholar] [CrossRef]
- Moss, D.; Nabedryk, E.; Breton, J.; Mantele, W. Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. Evaluation of the technique with cytochrome c. Eur. J. Biochem. 1990, 187, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Schlereth, D.D.; Mantele, W. Electrochemically induced conformational changes in cytochrome c monitored by Fourier transform infrared difference spectroscopy: Influence of temperature, pH, and electrode surfaces. Biochemistry 1993, 32, 1118–1126. [Google Scholar] [CrossRef]
- Inoue, T.; Suzuki, S.; Nishio, N.; Yamaguchi, K.; Kataoka, K.; Tobari, J.; Yong, X.; Hamanaka, S.; Matsumura, H.; Kai, Y. The significance of the flexible loop in the azurin (Az-iso2) from the obligate methylotroph Methylomonas sp. strain J. J. Mol. Biol. 2003, 333, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; McCammon, J.A. Dynamics, hydration, and motional averaging of a loop-gated artificial protein cavity: The W191G mutant of cytochrome c-peroxidase in water as revealed by molecular dynamics simulations. Biochemistry 2007, 46, 10629–10642. [Google Scholar] [CrossRef] [PubMed]
- Leszczynski, J.F.; Rose, G.D. Loops in globular proteins: A novel category of secondary structure. Science 1986, 234, 849–855. [Google Scholar] [CrossRef]
- Alvarez-Paggi, D.; Hannibal, L.; Castro, M.A.; Oviedo-Rouco, S.; Demicheli, V.; Tórtora, V.; Tomasina, F.; Radi, R.; Murgida, D.H. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem. Rev. 2017, 117, 13382–13460. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Zhang, Q.L.; Li, H.; Weng, Y.X.; Wang, W.C.; Qiu, X.G. Infrared spectroscopic discrimination between the loop and alpha-helices and determination of the loop diffusion kinetics by temperature-jump time-resolved infrared spectroscopy for cytochrome c. Biophys J. 2007, 93, 2756–2766. [Google Scholar] [CrossRef] [Green Version]
- Hoang, L.; Bedard, S.; Krishna, M.M.; Lin, Y.; Englander, S.W. Cytochrome c folding pathway: Kinetic native-state hydrogen exchange. Proc. Natl. Acad. Sci. USA 2002, 99, 12173–12178. [Google Scholar] [CrossRef] [Green Version]
- Hoang, L.; Maity, H.; Krishna, M.M.; Lin, Y.; Englander, S.W. Folding units govern the cytochrome c alkaline transition. J. Mol. Biol. 2003, 331, 37–43. [Google Scholar] [CrossRef]
- Maity, H.; Maity, M.; Krishna, M.M.; Mayne, L.; Englander, S.W. Protein folding: The stepwise assembly of foldon units. Proc. Natl. Acad. Sci. USA 2005, 102, 4741–4746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Rumbley, J.N.; Englander, S.W.; Wand, A.J. Fast structural dynamics in reduced and oxidized cytochrome c. Protein Sci. 2009, 18, 670–674. [Google Scholar] [CrossRef] [Green Version]
- Nekrasov, A.; Anashkina, A.; Zinchenko, A. A new paradigm of protein structural organization. Theoretical Approaches to BioInformation Systems. Book of Abstracts. In Proceedings of the TABIS 2013, Belgrade, Serbia, 17–22 September 2013; p. 1. Available online: https://www.researchgate.net/profile/Alexei-Nekrasov/publication/270684947_A_New_Paradigm_of_Protein_Structural_Organization/links/54b285da0cf220c63cd25c21/A-New-Paradigm-of-Protein-Structural-Organization.pdf#page=15. (accessed on 12 August 2021).
- Anashkina, A.A.; Nekrasov, A.N. The method for identification of hierarchical organization of protein sequences. Russ. J. Numer. Anal. Math. Model. 2014, 29, 266–273. [Google Scholar] [CrossRef]
- Bushnell, G.W.; Louie, G.V.; Brayer, G.D. High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 1990, 214, 585–595. [Google Scholar] [CrossRef]
- Ostroverkhova, T.V.; Chertkova, R.V.; Nekrasov, A.N.; Dolgikh, D.A.; Kirpichnikov, M.P. Design of mutant variants of horse cytochrome c by analysis of informational structure method and testing its biological activity. Mosc. Univ. Biol. Sci. Bull. 2011, 66, 65–67. [Google Scholar] [CrossRef]
- Chertkova, R.V.; Brazhe, N.A.; Bryantseva, T.V.; Nekrasov, A.N.; Dolgikh, D.A.; Yusipovich, A.I.; Sosnovtseva, O.; Maksimov, G.V.; Rubin, A.B.; Kirpichnikov, M.P. New insight into the mechanism of mitochondrial cytochrome c function. PLoS ONE 2017, 12, e0178280. [Google Scholar] [CrossRef]
- Nekrasov, A.N.; Alekseeva, L.G.; Pogosyan, R.A.; Dolgikh, D.A.; Kirpichnikov, M.P.; de Brevern, A.G.; Anashkina, A.A. A minimum set of stable blocks for rational design of polypeptide chains. Biochimie 2019, 160, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Pepelina, T.Y.; Chertkova, R.V.; Ostroverkhova, T.V.; Dolgikh, D.A.; Kirpichnikov, M.P.; Grivennikova, V.G.; Vinogradov, A.D. Site-directed mutagenesis of cytochrome c: Reactions with respiratory chain components and superoxide radical. Biochemistry (Mosc.) 2009, 74, 625–632. [Google Scholar] [CrossRef]
- Dolgikh, D.A.; Latypov, R.F.; Abdullaev, Z.K.; Kolov, V.; Roder, H.; Kirpichnikov, M.P. Expression of mutant horse cytochrome c genes in Escherichia coli. Russ. J. Bioorg. Chem. 1998, 24, 756–759. [Google Scholar]
- Pepelina, T.Yu.; Chertkova, R.V.; Dolgikh, D.A.; Kirpichnikov, M.P. The role of individual lysine residues of horse cytochrome c in the formation of reactive complexes with components of the respiratory chain. Russ. J. Bioorg. Chem. 2010, 36, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Chertkova, R.V.; Sharonov, G.V.; Feofanov, A.V.; Bocharova, O.V.; Latypov, R.F.; Chernyak, B.V.; Arseniev, A.S.; Dolgikh, D.A.; Kirpichnikov, M.P. Proapoptotic activity of cytochrome c in living cells: Effect of K72 substitutions and species differences. Mol. Cell. Biochem. 2008, 314, 85–93. [Google Scholar] [CrossRef]
- Johnson, D.; Lardy, H. Isolation of Mitochondria. Meth Enzym. 1967, 10, 94–96. [Google Scholar]
- Jacobs, E.E.; Sanadi, D.R. The reversible removal of cytochrome c from mitochondria. J. Biol. Chem. 1960, 235, 531–534. [Google Scholar] [CrossRef]
- Vinogradov, A.; Leikin, Yu.; Lipskaya, T. Mitochondrial biochemistry. Bioenergetics. In Manual of Practical Study to Animal Biochemistry; Lomonosov Moscow State University publishers: Moscow, Russia, 1977; pp. 19–22. [Google Scholar]
- Feng, Y.Q.; Roder, H.; Englander, S.W. Assignment of paramagnetically shifted resonances in the 1H NMR spectrum of horse ferricytochrome c. Biophys. J. 1990, 57, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Santos, H.; Turner, D.L. Proton NMR studies of horse ferricytochrome c. Completion of the assignment of the well resolved hyperfine shifted resonances. FEBS Lett. 1987, 226, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Lee, A.D.; Williams, R.J.; Williams, G. The effects of multiple amino acid substitutions on the polypeptide backbone of tuna and horse cytochromes c. Eur. J. Biochem. 1989, 182, 57–65. [Google Scholar] [CrossRef]
- Dong, A.; Huang, P.; Caughey, W.S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 1990, 29, 3303–3308. [Google Scholar] [CrossRef]
- Ataka, K.; Heberle, J. Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes. J. Am. Chem. Soc. 2004, 126, 9445–9457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Benabbas, A.; Zeng, W.; Kleingardner, J.G.; Bren, K.L.; Champion, P.M. Investigations of heme distor-tion, low-frequency vibrational excitations, and electron transfer in cytochrome c. Proc. Natl. Acad. Sci. USA 2014, 111, 6570–6575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krimm, S.; Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 1986, 38, 181–364. [Google Scholar]
- Holzbaur, I.E.; English, A.M.; Ismail, A.A. FTIR study of the thermal denaturation of horseradish and cytochrome c peroxidases in D2O. Biochemistry 1996, 35, 5488–5494. [Google Scholar] [CrossRef]
- Dong, A.C.; Huang, P.; Caughey, W.S. Redox-dependent changes in beta-extended chain and turn structures of cytochrome c in water solution determined by second derivative amide I infrared spectra. Biochemistry 1992, 31, 182–189. [Google Scholar] [CrossRef]
- Dong, A.; Caughey, W.S. Infrared methods for study of hemoglobin reactions and structures. Methods Enzymol. 1994, 232, 139–175. [Google Scholar]
- Venyaminov, S.Y.; Kalnin, N.N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in alpha-, beta-, and random coil conformations. Biopolymers 1990, 30, 1259–1271. [Google Scholar] [CrossRef]
- Ruegg, M.; Metzger, V.; Susi, H. Computer analyses of characteristic infrared bands of globular proteins. Biopolymers 1975, 14, 1465–1471. [Google Scholar] [CrossRef]
- Goormaghtigh, E.; Cabiaux, V.; Ruysschaert, J.M. Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur. J. Biochem. 1990, 193, 409–420. [Google Scholar] [CrossRef]
- Tonge, P.; Moore, G.R.; Wharton, C.W. Fourier-transform infra-red studies of the alkaline isomerization of mitochondrial cytochrome c and the ionization of carboxylic acids. Biochem. J. 1989, 258, 599–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mutations | Secondary Structure Fractions, % | RMSD/NRMSD | |||
---|---|---|---|---|---|
α-Helix | Β-Layer | β-Turn | Disordered | ||
WT | 35 | 12 | 21 | 32 | 0.101/0.036 |
T78N/K79Y/M80I/I81M/F82N (M1) | 30 | 17 | 22 | 31 | 0.074/0.027 |
T78S/K79P (M2) | 31 | 16 | 22 | 31 | 0.076/0.03 |
I81Y/A83Y/G84N (M3) | 31 | 18 | 21 | 30 | 0.082/0.031 |
P76I/G77L/I81L/F82L (M4) | 32 | 16 | 22 | 30 | 0.075/0.027 |
WT | T78N/K79Y/M80I/I81M/G84N (M1) | T78S/K79P (M2) | I81Y/A83Y/G84N (M3) | P76I/G77L/ I81L/F82L (M4) | |
---|---|---|---|---|---|
Amide I (1700–1600 cm−1) | |||||
Wavenumber, cm−1 | 1655 | 1618 | 1636 | 1634 | 1632 |
1695 | 1682 | 1684 | 1686 | ||
Amide II (1600–1500 cm−1) | |||||
Wavenumber, cm−1 | 1533 | 1504 | 1530 | 1518 | 1522 |
1574 | 1551 | 1551 | |||
Amide III (1320–1200 cm−1) | |||||
Wavenumber, cm−1 | 1240 | 1242 | 1240 | 1240 | 1242 |
CH3−, H−C−H vibrations (3060–2800 cm−1) | |||||
Wavenumber, cm−1 | 2868 2932 2960 3060 | 2870 2934 2960 3060 | 2870 2934 2960 3060 | 2868 2936 2960 3060 | 2870 2933 2960 3060 |
H2O (3500–3300 cm−1) | |||||
Wavenumber, cm−1 | 3339 | 3244 | 3306 | 3304 | 3302 |
3422 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chertkova, R.V.; Bryantseva, T.V.; Brazhe, N.A.; Kudryashova, K.S.; Revin, V.V.; Nekrasov, A.N.; Yusipovich, A.I.; Brazhe, A.R.; Rubin, A.B.; Dolgikh, D.A.; et al. Amino Acid Substitutions in the Non-Ordered Ω-Loop 70–85 Affect Electron Transfer Function and Secondary Structure of Mitochondrial Cytochrome c. Crystals 2021, 11, 973. https://doi.org/10.3390/cryst11080973
Chertkova RV, Bryantseva TV, Brazhe NA, Kudryashova KS, Revin VV, Nekrasov AN, Yusipovich AI, Brazhe AR, Rubin AB, Dolgikh DA, et al. Amino Acid Substitutions in the Non-Ordered Ω-Loop 70–85 Affect Electron Transfer Function and Secondary Structure of Mitochondrial Cytochrome c. Crystals. 2021; 11(8):973. https://doi.org/10.3390/cryst11080973
Chicago/Turabian StyleChertkova, Rita V., Tatyana V. Bryantseva, Nadezhda A. Brazhe, Kseniya S. Kudryashova, Victor V. Revin, Alexei N. Nekrasov, Alexander I. Yusipovich, Alexey R. Brazhe, Andrew B. Rubin, Dmitry A. Dolgikh, and et al. 2021. "Amino Acid Substitutions in the Non-Ordered Ω-Loop 70–85 Affect Electron Transfer Function and Secondary Structure of Mitochondrial Cytochrome c" Crystals 11, no. 8: 973. https://doi.org/10.3390/cryst11080973
APA StyleChertkova, R. V., Bryantseva, T. V., Brazhe, N. A., Kudryashova, K. S., Revin, V. V., Nekrasov, A. N., Yusipovich, A. I., Brazhe, A. R., Rubin, A. B., Dolgikh, D. A., Kirpichnikov, M. P., & Maksimov, G. V. (2021). Amino Acid Substitutions in the Non-Ordered Ω-Loop 70–85 Affect Electron Transfer Function and Secondary Structure of Mitochondrial Cytochrome c. Crystals, 11(8), 973. https://doi.org/10.3390/cryst11080973