A Cuckoo Search Algorithm Using Improved Beta Distributing and Its Application in the Process of EDM
Abstract
:1. Introduction
2. Cuckoo Search Algorithm
3. CS Algorithm Using Improved Beta Distribution Strategy
3.1. Improvement Strategies
3.2. IBCS Algorithm
4. Simulation and Analysis
4.1. Benchmark Functions
4.2. Parameter Settings
4.3. Results and Analysis
5. Case Study
6. Conclusions
Nomenclature and Abbreviations
ABC | artificial bee colony |
BCS | beta distribution search |
CS | cuckoo search |
EDM | electrical discharge machining |
GSO | glowworm swarm optimization |
IBCS | improved beta distributing search |
ICS | improved cuckoo search |
PSO | particle swarm optimization |
WC | wolf colony |
Ip | the discharge current |
Ton | the pulse-on time |
Toff | the pulse-off time |
Sv | the servo voltage |
the ith () current individuals in the Gth generation | |
the new ith individuals of the population in the (G + 1)th generation | |
the best individuals in the Gth generation | |
the step size scale factor | |
the probability of foreign egg discovery | |
r | the scaling factor |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, 12–15 October 1997; Volume 5, pp. 4104–4108. [Google Scholar]
- Zhang, G.; Liu, M.; Li, J.; Ming, W.; Shao, X.; Huang, Y. Multi-objective optimization for surface grinding process using a hybrid particle swarm optimization algorithm. Int. J. Adv. Manuf. Technol. 2014, 71, 1861–1872. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B.A. powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Kuo, M.T. Application of the Artificial Bee Colony Algorithm to Scheduling Strategies for Energy Storage Systems of a Microgrid with Self-healing Functions. IEEE Trans. Ind. Appl. 2021, 57, 2156–2167. [Google Scholar] [CrossRef]
- Krishnanand, K.N.; Ghose, D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell. 2009, 3, 87–124. [Google Scholar] [CrossRef]
- Xia, P.; Ni, Z.; Zhu, X.; Zhang, J.; Jin, Y. A Novel Prediction Method Based on Improved Binary Glowworm Swarm Optimization and Multi-Fractal Dimension for P2P Lending Investment Risk. IEEE Access 2020, 8, 23232–23245. [Google Scholar] [CrossRef]
- Qiang, Z.; Zhou, Y.; Xin, C.A. Wolf Colony Search Algorithm Based on the Complex Method for Uninhabited Combat Air Vehicle Path Planning. Int. J. Hybrid Inf. Technol. 2014, 7, 183–200. [Google Scholar]
- Ming, W.; Hou, J.; Zhang, Z.; Huang, H.; Xu, Z.; Zhang, G.; Huang, Y. Integrated ANN-LWPA for cutting parameter optimization in WEDM. Int. J. Adv. Manuf. Technol. 2016, 84, 1277–1294. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Levy flights. In Proceedings of the Nature & Biologically Inspired Computing, (NaBIC 2009), Coimbatore, India, 9–11 December 2009; IEEE Publications: Piscataway, NJ, USA, 2009; pp. 210–214. [Google Scholar]
- Yang, X.S.; Deb, S. Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343. [Google Scholar] [CrossRef]
- Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R. Modified cuckoo search: A new gradient free optimisation algorithm. Chaos Solitons Fractals 2011, 9, 710–718. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo Search: Recent Advances and Applications. Neural Comput. Appl. 2014, 24, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Luo, L.; He, X.; Yan, W. Hybrid optimization algorithm of PSO and cuckoo search. In Proceedings of the International Conference on Artificial Intelligence, Management Science and Electronic Commerce, Deng Feng, China, 8–10 August 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1172–1175. [Google Scholar]
- Hu, X.; Yin, Y. Cooperative Co-Evolutionary Cuckoo Search Algorithm for Continuous Function Optimization Problems. Pattern Recognit. Artif. Intell. 2013, 26, 1041–1049. [Google Scholar]
- Wang, L.; Yin, Y.; Zhong, Y. Cuckoo Search Algorithm with Dimension by Dimension Improvement. Ruan Jian Xue Bao/J. Softw. 2013, 24, 2687–2698. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Zhong, Y.; Yin, Y. Orthogonal crossover cuckoo search algorithm with external archive. J. Comput. Res. Dev. 2015, 52, 2496–2507. (In Chinese) [Google Scholar]
- Valian, E.; Mohanna, S.; Tavakoli, S. Improved Cuckoo search algorithm for global optimization. Int. J. Commun. Inf. Technol. 2011, 1, 31–44. [Google Scholar]
- Wang, L.; Yin, Y.; Zhong, Y. Cuckoo search with varied scaling factor. Front. Comput. Sci. 2015, 9, 623–635. [Google Scholar] [CrossRef]
- Lin, Y.; Liang, Z.; Hu, H. Cuckoo search algorithm with beta distribution. J. Nanjing Univ. (Nat. Sci.) 2016, 52, 638–646. (In Chinese) [Google Scholar]
- Prakash, C.; Singh, S.; Pruncu, C. Surface Modification of Ti-6Al-4V Alloy by Electrical Discharge Coating Process Using Partially Sintered Ti-Nb Electrode. Materials 2019, 12, 1006. [Google Scholar] [CrossRef] [Green Version]
- Handrashekarappa, M.P.G.; Kumar, S.; Jagadish; Pimenov, D.Y. Experimental Analysis and Optimization of EDM Parameters on HcHcr Steel in Context with Different Electrodes and Dielectric Fluids Using Hybrid Taguchi-Based PCA-Utility and CRITIC-Utility Approaches. Metals 2021, 11, 419. [Google Scholar] [CrossRef]
- Ming, W.; Shen, F.; Zhang, Z. A comparative investigation on magnetic field–assisted EDM of magnetic and non-magnetic materials. Int. J. Adv. Manuf. Technol. 2020, 109, 1103–1116. [Google Scholar] [CrossRef]
- Ming, W.; Jia, H.; Zhang, H. A comprehensive review of electric discharge machining of advanced ceramics. Ceram. Int. 2020, 46, 21813–21838. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Ming, W. A review on magnetic field assisted electrical discharge machining. J. Manuf. Process. 2021, 64, 694–722. [Google Scholar] [CrossRef]
- Kunieda, M.; Lauwers, B.; Rajurkar, K.P.; Rajurkar, B.M. Advancing EDM through Fundamental Insight into the Process. CIRP Ann. 2005, 54, 64–87. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Shi, J.; Dong, Y.; Yang, S.; Zhang, X.; Lin, B. Analysis of material removal and surface generation mechanism of ultrasonic vibration–assisted EDM. Int. J. Adv. Manuf. Technol. 2020, 110, 177–189. [Google Scholar] [CrossRef]
- Ming, W.; Zhang, G.; Li, H.; Guo, J.; Zhang, Z.; Huang, Y.; Chen, Z. A hybrid process model for EDM based on finite-element method and Gaussian process regression. Int. J. Adv. Manuf. Technol. 2014, 74, 1197–1211. [Google Scholar] [CrossRef]
- Ming, W.; Ma, J.; Zhang, Z.; Huang, H.; Shen, D.; Zhang, G.; Huang, Y. Soft computing models and intelligent optimization system in electro-discharge machining of SiC/Al composites. Int. J. Adv. Manuf. Technol. 2016, 87, 201–217. [Google Scholar] [CrossRef]
- Fouly, A.; Almotairy, S.M.; Aijaz, M.O.; Alharbi, H.F.; Abdo, H.S. Balanced Mechanical and Tribological Performance of High-Frequency-Sintered Al-SiC Achieved via Innovative Milling Route—Experimental and Theoretical Study. Crystals 2021, 11, 700. [Google Scholar] [CrossRef]
- Chen, M.; Bai, Y.; Zhang, Z.; Zhao, H. The Preparation of High-Volume Fraction SiC/Al Composites with High Thermal Conductivity by Vacuum Pressure Infiltration. Crystals 2021, 11, 515. [Google Scholar] [CrossRef]
No. | Function Name | Dimension | Initial Value Range | Target Value |
---|---|---|---|---|
f1 | Shpere | 30 | [−5, 5] | 0 |
50 | [−10, 10] | 0 | ||
f2 | Ackley | 30 | [−5, 5] | 0 |
50 | [−10, 10] | 0 | ||
f3 | Rastrigin | 30 | [−5, 5] | 0 |
50 | [−10, 10] | 0 | ||
f4 | Rosenbrock | 30 | [−5, 5] | 0 |
50 | [−10, 10] | 0 | ||
f5 | Griewank | 30 | [−5, 5] | 0 |
50 | [−10, 10] | 0 | ||
f6 | Schwefel | 30 | [−5, 5] | 0 |
50 | [−10, 10] | 0 |
No. | Algorithm | Mean | Variance | Sort |
---|---|---|---|---|
f1 | Standard CS [9,10] | 2.059 × 10−19 | 4.473 × 10−38 | 4 |
ICS [17] | 1.643 × 10−33 | 8.102 × 10−65 | 3 | |
BCS [19] | 8.217 × 10−34 | 9.779 × 10−66 | 2 | |
IBCS | 4.109 × 10−34 | 5.064 × 10−66 | 1 | |
f2 | Standard CS [9,10] | 2.603 × 10−09 | 3.669 × 10−17 | 4 |
ICS [17] | 3.553 × 10−15 | 0 | 3 | |
BCS [19] | 5.092 × 10−15 | 3.206 × 10−30 | 2 | |
IBCS | 3.789 × 10−15 | 8.124 × 10−31 | 1 | |
f3 | Standard CS [9,10] | 4.069 × 101 | 3.625 × 101 | 3 |
ICS [17] | 4.138 × 101 | 4.775 × 101 | 3 | |
BCS [19] | 3.448 × 101 | 1.564 × 102 | 2 | |
IBCS | 3.184 × 101 | 5.774 × 101 | 1 | |
f4 | Standard CS [9,10] | 1.633 × 101 | 2.391 × 100 | 3 |
ICS [17] | 1.598 × 101 | 2.253 × 101 | 3 | |
BCS [19] | 1.056 × 101 | 5.114 × 10−1 | 1 | |
IBCS | 1.108 × 101 | 5.927 × 10−1 | 1 | |
f5 | Standard CS [9,10] | 5.070 × 10−16 | 7.711 × 10−30 | 4 |
ICS [17] | 0 | 0 | 1 | |
BCS [19] | 0 | 0 | 1 | |
IBCS | 0 | 0 | 1 | |
f6 | Standard CS [9,10] | 3.655 × 10−17 | 3.172 × 10−33 | 4 |
ICS [17] | 3.159 × 10−32 | 1.221 × 10−63 | 3 | |
BCS [19] | 2.327 × 10−33 | 4.768 × 10−66 | 1 | |
IBCS | 1.679 × 10−32 | 1.501 × 10−64 | 2 |
No. | Algorithm | Mean | Variance | Sort |
---|---|---|---|---|
f1 | Standard CS [9,10] | 1.953 × 10−20 | 2.935 × 10−40 | 4 |
ICS [17] | 1.252 × 10−32 | 2.005 × 10−65 | 3 | |
BCS [19] | 8.432 × 10−34 | 3.898 × 10−68 | 2 | |
IBCS | 5.699 × 10−36 | 3.701 × 10−72 | 1 | |
f2 | Standard CS [9,10] | 4.757 × 10−10 | 2.0625 × 10−19 | 4 |
ICS [17] | 6.394 × 10−15 | 2.244 × 10−30 | 1 | |
BCS [19] | 6.751 × 10−15 | 1.262 × 10−30 | 3 | |
IBCS | 6.394 × 10−15 | 2.244 × 10−30 | 1 | |
f3 | Standard CS [9,10] | 6.946 × 101 | 8.525 × 101 | 1 |
ICS [17] | 1.023 × 102 | 3.295 × 102 | 4 | |
BCS [19] | 6.338 × 101 | 4.604 × 102 | 1 | |
IBCS | 6.192 × 101 | 2.147 × 102 | 1 | |
f4 | Standard CS [9,10] | 3.535 × 101 | 3.095 × 100 | 3 |
ICS [17] | 3.853 × 101 | 3.104 × 100 | 3 | |
BCS [19] | 2.817 × 101 | 3.292 × 10−1 | 1 | |
IBCS | 2.731 × 101 | 8.941 × 10−1 | 1 | |
f5 | Standard CS [9,10] | 0 | 0 | 1 |
ICS [17] | 0 | 0 | 1 | |
BCS [19] | 0 | 0 | 1 | |
IBCS | 0 | 0 | 1 | |
f6 | Standard CS [9,10] | 2.131 × 10−17 | 2.567 × 10−34 | 4 |
ICS [17] | 2.558 × 10−30 | 4.766 × 10−60 | 3 | |
BCS [19] | 6.789 × 10−31 | 5.379 × 10−61 | 2 | |
IBCS | 6.648 × 10−33 | 5.753 × 10−65 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, D.; Ming, W.; Ren, X.; Xie, Z.; Zhang, Y.; Liu, X. A Cuckoo Search Algorithm Using Improved Beta Distributing and Its Application in the Process of EDM. Crystals 2021, 11, 916. https://doi.org/10.3390/cryst11080916
Shen D, Ming W, Ren X, Xie Z, Zhang Y, Liu X. A Cuckoo Search Algorithm Using Improved Beta Distributing and Its Application in the Process of EDM. Crystals. 2021; 11(8):916. https://doi.org/10.3390/cryst11080916
Chicago/Turabian StyleShen, Dili, Wuyi Ming, Xinggui Ren, Zhuobin Xie, Yong Zhang, and Xuewen Liu. 2021. "A Cuckoo Search Algorithm Using Improved Beta Distributing and Its Application in the Process of EDM" Crystals 11, no. 8: 916. https://doi.org/10.3390/cryst11080916
APA StyleShen, D., Ming, W., Ren, X., Xie, Z., Zhang, Y., & Liu, X. (2021). A Cuckoo Search Algorithm Using Improved Beta Distributing and Its Application in the Process of EDM. Crystals, 11(8), 916. https://doi.org/10.3390/cryst11080916