A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal
Abstract
1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Webber, M.E.; Pushkarsky, M.; Patel, C.K.N. Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation. J. Appl. Phys. 2005, 97, 113101. [Google Scholar] [CrossRef]
- Petrov, V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Prog. Quantum Electron. 2015, 42, 1–106. [Google Scholar] [CrossRef]
- Hildenbrand, A.; Kieleck, C.; Tyazhev, A.; Marchev, G.; Stöppler, G.; Eichhorn, M.; Schunemann, P.G.; Panyutin, V.L.; Petrov, V. Laser damage of the nonlinear crystals CdSiP2 and ZnGeP2 studied with nanosecond pulses at 1064 and 2090 nm. Opt. Eng. 2014, 53, 122511. [Google Scholar] [CrossRef]
- Gutty, F.; Grisard, A.; Larat, C.; Papillon, D.; Schwarz, M.; Gerard, B.; Ostendorf, R.; Rattunde, M.; Wagner, J.; Lallier, E. 140 W peak power laser system tunable in the LWIR. Opt. Express 2017, 25, 18897–18906. [Google Scholar] [CrossRef] [PubMed]
- Wueppen, J.; Nyga, S.; Jungbluth, B.; Hoffmann, D. 1.95 μm-pumped OP-GaAs optical parametric oscillator with 10.6 μm idler wavelength. Opt. Lett. 2016, 41, 4225–4228. [Google Scholar] [CrossRef] [PubMed]
- Boyko, A.A.; Kostyukova, N.Y.; Marchev, G.M.; Pasiskevicius, V.; Kolker, D.B.; Zukauskas, A.; Petrov, V. Rb:PPKTP optical parametric oscillator with intracavity difference-frequency generation in AgGaSe2. Opt. Lett. 2016, 41, 2791–2794. [Google Scholar] [CrossRef] [PubMed]
- Boyko, A.A.; Marchev, G.M.; Petrov, V.; Pasiskevicius, V.; Kolker, D.B.; Zukauskas, A.; Kostyukova, N.Y. Intracavity-pumped, cascaded AgGaSe2 optical parametric oscillator tunable from 5.8 to 18 μm. Opt. Express 2015, 23, 33460–33465. [Google Scholar] [CrossRef] [PubMed]
- Gerhards, M. High energy and narrow bandwidth mid IR nanosecond laser system. Opt. Commun. 2004, 241, 493–497. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, G.Y.; Yang, C.; Yao, B.Q.; Wang, R.X.; Mi, S.Y.; Yang, K.; Dai, T.Y.; Duan, X.M.; Ju, Y.L. 1 W, 10.1 μm, CdSe optical parametric oscillator with continuous-wave seed injection. Opt. Lett. 2020, 45, 2119–2122. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, C.; Liu, G.Y.; Yao, B.Q.; Wang, R.X.; Yang, K.; Mi, S.Y.; Dai, T.Y.; Duan, X.M.; You, Y.L. 11 μm, high beam quality idler-resonant CdSe optical parametric oscillator with continuous-wave injection-seeded at 2.58 μm. Opt. Express 2020, 28, 17056–17063. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.R.; Chen, Y.; Yao, B.Q.; Yao, J.Y.; Guo, Y.W.; Wang, R.X.; Dai, T.Y.; Duan, X.M. High-efficiency, tunable 8-9 μm BaGa4Se7 optical parametric oscillator pumped at 2.1 μm. Opt. Mater. Express 2018, 8, 3332–3337. [Google Scholar] [CrossRef]
- Bakkland, A.; Fonnum, H.; Lippert, E.; Haakestad, M.W. Long-wave infrared source with 45 mJ pulse energy based on nonlinear conversion in ZnGeP2. Conf. Lasers Electro Opt. 2016. [Google Scholar] [CrossRef]
- Liu, G.Y.; Chen, Y.; Yao, B.Q.; Yang, K.; Qian, C.P.; Dai, T.Y.; Duan, X.M. Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals. Appl. Phys. B 2019, 125, 233. [Google Scholar] [CrossRef]
- Liu, G.Y.; Chen, Y.; Yao, B.Q.; Wang, R.X.; Yang, K.; Yang, C.; Mi, S.Y.; Dai, T.Y.; Duan, X.M. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 μm. Opt. Lett. 2020, 45, 2347–2350. [Google Scholar] [CrossRef] [PubMed]
- Vodopyanov, K.L.; Ganikhanov, F.; Maffetone, J.P.; Zwieback, I.; Ruderman, W. ZnGeP2 optical parametric oscillator with 3.8–12.4 μm tunability. Opt. Lett. 2000, 25, 841–843. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.P.; Yu, T.; Liu, J.; Jiang, Y.Y.; Wang, S.J.; Shi, X.C.; Ye, X.S.; Chen, W.B. 5.4 W, 9.4 ns pulse width, long-wave infrared ZGP OPO pumped by Ho:YAG MOPA system. IEEE Photonics J. 2021, 17. in press. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, C.; Yu, T.; Liu, J.; Jiang, Y.; Wang, S.; Shi, X.; Ye, X.; Chen, W. A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal. Crystals 2021, 11, 656. https://doi.org/10.3390/cryst11060656
Qian C, Yu T, Liu J, Jiang Y, Wang S, Shi X, Ye X, Chen W. A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal. Crystals. 2021; 11(6):656. https://doi.org/10.3390/cryst11060656
Chicago/Turabian StyleQian, Chuanpeng, Ting Yu, Jing Liu, Yuyao Jiang, Sijie Wang, Xiangchun Shi, Xisheng Ye, and Weibiao Chen. 2021. "A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal" Crystals 11, no. 6: 656. https://doi.org/10.3390/cryst11060656
APA StyleQian, C., Yu, T., Liu, J., Jiang, Y., Wang, S., Shi, X., Ye, X., & Chen, W. (2021). A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal. Crystals, 11(6), 656. https://doi.org/10.3390/cryst11060656