Enhanced Electrochromic Performance by Anodic Polarization in Nickel Oxide Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosseinsky, D.R.; Mortimer, R.J. Electrochromic systems and the prospects for devices. Adv. Mater. 2010, 13, 783–793. [Google Scholar] [CrossRef]
- Lu, N.; Zhang, P.; Zhang, Q.; Qiao, R.; He, Q.; Li, H.-B.; Wang, Y.; Guo, J.; Zhang, D.; Duan, Z.; et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 2017, 546, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, C. Electrochromic Nanocrystal Quantum Dots. Science 2001, 291, 2390–2392. [Google Scholar] [CrossRef]
- Granqvist, C.-G. Electrochromic materials: Out of a niche. Nat. Mater. 2006, 5, 89–90. [Google Scholar] [CrossRef]
- Mortimer, R.J. Electrochromic Materials. Annu. Rev. Mater. Res. 2011, 41, 241–268. [Google Scholar] [CrossRef]
- Hassab, S.; Shen, D.E.; Österholm, A.M.; Rocha, M.D.; Song, G.; Alesanco, Y. A new standard method to calculate electro-chromic switching time. Sol. Energy Mater. Sol. Cells 2018, 185, 54–60. [Google Scholar] [CrossRef]
- Chandrasekhar, P.; Zay, B.J.; Birur, G.C.; Rawal, S.; Pierson, E.A.; Kauder, L.; Swanson, T. Large, Switchable electrochromism in the visible through far-infrared in conducting polymer devices. Adv. Funct. Mater. 2002, 12, 95–103. [Google Scholar] [CrossRef]
- Cui, B.-B.; Zhong, Y.-W.; Yao, J. Three-State Near-Infrared Electrochromism at the Molecular Scale. J. Am. Chem. Soc. 2015, 137, 4058–4061. [Google Scholar] [CrossRef]
- Monk, P.M.S.; Mortimer, R.J.; Rosseinsky, D.R. Electrochromism: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Granqvist, C. Handbook of Inorganic Electrochromic Materials; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Seidel, J.; Luo, W.; Suresha, S.J.; Nguyen, P.K.; Lee, A.S.; Kim, S.Y.; Yang, C.H.; Pennycook, S.J.; Pantelides, S.T.; Scott, J.F. Prominent electrochromism through vacancy-order melting in a complex oxide. Nat. Commun. 2012, 3, 1–6. [Google Scholar] [CrossRef]
- Zheng, H.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar-Zadeh, K. Nanostructured tungsten oxide-properties, syn-thesis, and applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
- Faria, I.C.; Kleinke, M.; Gorenstein, A.; Fantini, M.C.A.; Tabacniks, M.H. Toward Efficient Electrochromic NiO x Films: A Study of Microstructure, Morphology, and Stoichiometry of Radio Frequency Sputtered Films. J. Electrochem. Soc. 1998, 145, 235–240. [Google Scholar] [CrossRef]
- Browne, M.P.; Nolan, H.; Berner, N.C.; Duesberg, G.S.; Lyons, M.E.G. Electrochromic nickel oxide films for smart window applications. Int. J. Electrochem. Sci. 2016, 11, 6636–6647. [Google Scholar] [CrossRef]
- Mihelčič, M.; Vuk, A.Š.; Jerman, I.; Orel, B.; Švegl, F.; Moulki, H.; Faure, C.; Campet, G.; Rougier, A. Comparison of electro-chromic properties of Ni1−xO in lithium and lithium-free aprotic electrolytes: From Ni1−xO pigment coatings to flexible electrochromic devices. Sol. Energy Mater. Sol. Cells 2014, 120, 116–130. [Google Scholar] [CrossRef]
- Conell, R.S.; Corrigan, D.A.; Powell, B.R. The electrochromic properties of sputtered nickel oxide films. Sol. Energy Mater. Sol. Cells 1992, 25, 301–313. [Google Scholar] [CrossRef]
- Vidales-Hurtado, M.A.; Mendoza-Galván, A. Optical and structural characterization of nickel oxide-based thin films obtained by chemical bath deposition. Mater. Chem. Phys. 2008, 107, 33–38. [Google Scholar] [CrossRef]
- Passerini, S.; Scrosati, B.; Gorenstein, A. The Intercalation of Lithium in Nickel Oxide and Its Electrochromic Properties. J. Electrochem. Soc. 1990, 137, 3297–3300. [Google Scholar] [CrossRef]
- Sahu, D.; Wu, T.-J.; Wang, S.-C.; Huang, J.-L. Electrochromic behavior of NiO film prepared by e-beam evaporation. J. Sci. Adv. Mater. Devices 2017, 2, 225–232. [Google Scholar] [CrossRef]
- Yang, P.; Li, L.; Yu, S.; Zheng, H.; Peng, W. The annealing temperature and films thickness effect on the surface morphology, preferential orientation and dielectric property of NiO films. Appl. Surf. Sci. 2019, 493, 396–403. [Google Scholar] [CrossRef]
- Vernardou, D.; Psifis, K.; Louloudakis, D.; Papadimitropoulos, G.; Davazoglou, D.; Katsarakis, N.; Koudoumas, E.; Koudoumas, E. Low Pressure CVD of Electrochromic WO3 at 400 °C. J. Electrochem. Soc. 2015, 162, H579–H582. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, T.G.; Nahm, S.; Kim, D.H.; Han, S.H. Investigation of all-solid-state electrochromic devices with durability en-hanced tungsten-doped nickel oxide as a counter electrode. J. Alloys Compds. 2019, 815, 152399–152402. [Google Scholar] [CrossRef]
- Bouessay, I.; Rougier, A.; Beaudoin, B.; Leriche, J. Pulsed Laser-Deposited nickel oxide thin films as electrochromic anodic materials. Appl. Surf. Sci. 2002, 186, 490–495. [Google Scholar] [CrossRef]
- Wen, R.T.; Niklasson, G.A.; Granqvist, C.G. Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties. Thin Solid Films 2014, 565, 128–135. [Google Scholar] [CrossRef]
- Kubo, T.; Nishikitani, Y.; Sawai, Y.; Iwanaga, H.; Sato, Y.; Shigesato, Y. Electrochromic properties of LixNiyO films deposited by RF magnetron sputtering. J. Electrochem. Soc. 2009, 156, H629–H633. [Google Scholar] [CrossRef]
- Moulki, H.; Park, D.H.; Min, B.K.; Kwon, H.; Hwang, S.J.; Choy, J.H.; Toupance, T.; Campet, G.; Rougier, A. Improved electro-chromic performances of NiO based thin films by lithium addition: From single layers to devices. Electrochim. Acta 2012, 74, 46–52. [Google Scholar] [CrossRef]
- Uhlenbrock, S.; Scharfschwerdt, C.; Neumann, M.; Illing, G.; Freund, H.-J. The influence of defects on the Ni 2p and O 1s XPS of NiO. J. Phys. Condens. Matter 1992, 4, 7973–7978. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, G.; Ni, X.; Wu, X. Structural, infrared, x-ray photoelectron, and Raman spectral characterization of electrochromic nickel oxide films. In Proceedings of the Fourth International Conference on Thin Film Physics and Applications, Shanghai, China, 8–11 May 2000; Volume 4086, pp. 418–423. [Google Scholar] [CrossRef]
- Ahn, K.S.; Nah, Y.C.; Sung, Y.E. Surface morphological, microstructural, and electrochromic properties of short-range ordered and crystalline nickel oxide thin films. Appl. Surf. Sci. 2002, 199, 259–269. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Wang, W.; Wen, R.-T. Enhanced Electrochromic Performance by Anodic Polarization in Nickel Oxide Films. Crystals 2021, 11, 615. https://doi.org/10.3390/cryst11060615
Guo X, Wang W, Wen R-T. Enhanced Electrochromic Performance by Anodic Polarization in Nickel Oxide Films. Crystals. 2021; 11(6):615. https://doi.org/10.3390/cryst11060615
Chicago/Turabian StyleGuo, Xing, Wei Wang, and Rui-Tao Wen. 2021. "Enhanced Electrochromic Performance by Anodic Polarization in Nickel Oxide Films" Crystals 11, no. 6: 615. https://doi.org/10.3390/cryst11060615
APA StyleGuo, X., Wang, W., & Wen, R.-T. (2021). Enhanced Electrochromic Performance by Anodic Polarization in Nickel Oxide Films. Crystals, 11(6), 615. https://doi.org/10.3390/cryst11060615