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Abstract: Nickel oxide (NiO) is considered to be the best candidate for the compensatory layer of
WO3-based smart windows. In this article, we demonstrate that a facile anodic polarization can
dramatically improve the electrochromic performance. Unambiguous evidence of performance
enhancement was demonstrated by both in situ optical response and cyclic voltammetry. Benefiting
from this treatment, the quantity of voltammetric charge increased by ∼43.8% under the same test
conditions, enhancing the corresponding electrochromic modulation by ∼17.6 %. The improved
performance is due to the newly exposed high-valence Ni3+ ions during anion-dependent anodization.
These results offer a novel strategy for the preparation of high-performance NiO films and provide
valuable insights into the underlying mechanism in the electrochromic process.

Keywords: NiO films; anodic polarization; enhanced electrochromism

1. Introduction

Electrochromism (EC) refers to a phenomenon in which electrochromic materials
undergo stable and reversible color changes under a small external driving voltage [1–3].
Devices composed of electrochromic materials are called electrochromic devices (ECDs). EC
materials and devices can be used in smart buildings (smart windows or electronic displays)
and automotive anti-glare rearview mirrors due to their electrically adjustable optical
properties (transmittance, reflectance, and absorptance) and low power consumption. They
also show potential application in military (infrared stealth, aircraft surface temperature
control) and other fields [4].

EC materials can be divided into two categories: organic and inorganic [5]. The or-
ganic counterparts include viologens, Prussian blue [6], conjugated conductive polymers
and their derivatives [7,8]. Although organic electrochromic materials have the advantages
of abundant colors and fast response, they are limited to low color saturation and easy
degradation. In contrast, inorganic electrochromic materials have better cycle stability and
environmental durability, meeting the expectations of long service life [9,10]. Therefore,
they are more suitable for commercial production and development. Transition metal
oxides represent the most typical inorganic electrochromic material, the operation of which
is based on reversible intercalation/deintercalation of ions into the lattice accompanied
with valence change of metal ions [11,12]. Among these, nickel oxide (NiO), considered
to be a high-optical contrast and abundant raw material, and a low-cost anodically color-
ing electrochromic material [13–15], is highly suitable for the counter electrode layer in
complementary EC devices. Although NiO-based films are applied to commercial devices,
their performance still needs to be largely improved, in terms of factors such as cycling
durability, low coloring efficiency, and optical absorption [16,17]. Therefore, it is essential
to find a facile means to improve their performance and explore the internal mechanism.
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In this study, we present the growth of NiO thin films by an E-beam evaporation
method that can obtain films with high crystallinity and larger specific surface area. The
anodic polarization can enhance the EC performance dramatically, providing a simple but
effective route to a wider range of applications. Scrosati et al. reported the galvanostatic
activation of a nickel oxide film in the LiClO4-PC electrolyte; however, initial activation
and anodization are different [18]. In this study, the polarized films exhibited increased
quantity of voltammetric charge under the same test conditions, accompanied by a∼17.6 %
increase in electrochromic optical modulation. Additionally, the coloration efficiency of
the optimized film is around 24.5 cm2/C. X-ray diffraction, scanning electron microscopy,
and X-ray photoelectron spectroscopy were employed to determine the mechanism. We
found that the improved performance originated from newly exposed high-valence Ni3+

ions upon anodic polarization. Furthermore, the introduced lattice stress in the process of
anodic polarization films is another significant factor that improved the EC performance.
Therefore, the anodic polarized films are highly promising for EC devices.

2. Materials and Methods

The E-beam evaporation method was employed to prepare NiO thin films on indium
tin oxide (ITO) substrates. The purchased NiO pellets (Beijing VNANO Vacuum Technology
Co., Ltd., Beijing, China) were used as the target for the fabrication of NiO film. Detailed
procedures for depositing NiO have been mentioned in other papers [19]. Before the
deposition of the films, the E-beam chamber was pumped down to 4.0 × 10−5 Pa. NiO
films were fabricated with various deposition rates, working pressures, working currents,
and oxygen flows. Detailed deposition parameters of the film under different conditions are
presented in Table S1 (Supplementary Materials). Finally, we selected the best preparation
conditions for the performance characterization. Prior to characterization, we calculated
the specific surface area, which was about 126.34 m2/g (Figure S1).

The crystal structure was studied by X-ray diffraction (XRD) using a Bruker (D8 ad-
vance) diffractometer (Bruker, Billerica, MA, USA) with CuKα radiation. A field emission
scanning electron microscope (SEM, S-4800, Hitachi, Tokyo, Japan) was used to study the
surface morphology of the film with an operative voltage of 10 kV. X-ray photoelectron
spectroscopy (XPS, ESCALab250Xi, Thermo Fisher scientific, Waltham, MA, USA) analysis
was employed to determine the elemental composition and chemical bonding state in NiO
film with an Al Kα line operating at 10 kV and 12 mA. The carbon 1s peak with binding
energy 284.8 eV was used to calibrate the Ni binding energy. Data were analyzed by apply-
ing Shirley-type background subtraction. The in situ transmittance spectra were obtained
using a UV-visible near-infrared (NIR) spectrophotometer (Evolution 100, Thermo Electron
Corporation, Waltham, MA, USA). All electrochemical measurements were conducted on a
CHI660C electrochemical working station (Chenhua, Shanghai, China) equipped with a
three-electrode electrochemical cell system. The nonaqueous electrolyte solution of lithium
perchlorate in propylene carbonate (PC−LiClO4) with 0.5 M strength was prepared to
study the electrochromic properties of the obtained films. NiO was the working electrode
on indium tin oxide. The counter and reference electrodes were a platinum grid and a satu-
rated calomel electrode (SCE), respectively. The anodic polarization was conducted from
zero to 1.5 V at υ = 5 mV/s. Atomic force microscope (AFM) measurement was conducted
using an XE15 Litho from Park Systems (Park Systems Corporate, Suwon, Korea). The
height of the Z-axis was set from zero to 12 microns.

3. Results and Discussion

Figure 1a presents the transmittances at 550 nm of the NiO films with different anodic
polarization times (corresponding digital photos are shown in Figure S2). In addition,
transmittance spectra of the film in the full visible region in its oxidized and reduced states
is shown in Figure S3. In the colored state, all the polarized films have lower transmittance
than that of the bleached state. The transmission modulation, ∆T (Tbleached − Tcolored) at
550 nm for the films shown in Figure 1b, indicates that the ∆T value increases from the first
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anodic polarization to the seventh anodic polarization, and then slightly decreases upon
further treatment. The main contribution of the increased transmission modulation is by
lowering the transmittance of the colored state. This is because the anodic polarization
forces some Ni species that were originally bound by other atoms to be exposed to interact
with subsequent Li+ and ClO4

− ions, thereby enhancing the modulation ability.
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Figure 1. (a) Comparison of in situ optical response at 550 nm of the same NiO film as a function of the anodic polarization
time under the same CV test conditions: in the range from −1.0 to 1.5 V at υ = 30 mV/s in PC−LiClO4. (b) Corresponding
transmittance changes (∆T) under different conditions.

Next, we discuss how the above-mentioned reaction routes can enhance the elec-
trochromic performance after the treatment of the anodic polarization. CV was performed
on the NiO film in the potential range from −1.0 to 1.5 V at ν = 30 mV/s. It is generally
believed that capacity of the films possesses a larger integral area of the CV curve, repre-
senting better EC properties due to the large exchange charge [20]. Figure 2 shows that the
CV cycle curve of the anodic polarized film (line in red) can enlarge the integral area of the
CV curve compared with the original film. The Ni2+ species in the film would be further
oxidized into Ni3+ species by anodic polarization. These newly generated high-valence
oxide species are then lithiated in subsequent CV cycles, consequently resulting in the
enlargement of the CV area. It is estimated that the quantity of redox charge involved
increases by ∼43.8% after the fifth anodic polarization. This evolution is consistent with
the corresponding optical responses in Figure 1. These results further prove that the anodic
polarization treatment is a simple but useful approach to improve the EC performance,
thereby promoting the film’s industrial application.
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Figure 2. Cyclic voltammograms of the NiO films at different working current during different
operation conditions: in the range from -1.0 to 1.5 V at υ = 30 mV/s in PC−LiClO4.
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To further evaluate the electrochromic performance, the coloration efficiency (CE) of
the film is presented in Figure 3. The coloration efficiency (CE) is defined as [21]:

CE = ∆OD/Qin
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Figure 3. (a) Coloration efficiency of NiO films as a function of different anodic polarization times. (b) Corresponding
charge with different anodic polarization times.

Figure 3a shows that the anodic polarization treatment can significantly improve the
CE of the NiO films. The CE can increase from 22.1 cm2/C (the first anodic polarization)
to a maximum value of 24.5 cm2/C (the fifth anodic polarization), and then decreases
slightly with an increase in anodic polarization time. This indicates that the facile anodic
treatment can obtain better EC performance. Moreover, as shown in Figure 3b, the change
of capacitance is consistent with the trend in coloration efficiency, proving the additional
intercalation during the treatment of anodic polarization can improve the EC performance
slightly. This moderate performance improvement drove us to further clarify the possible
internal mechanism via a microscopic to study the crystallization properties of materials
and their surface structure.

The surface morphology of different NiO films was examined by a SEM operating at
20 kV. The sample surface and cross-section were coated with gold by sputtering prior to
introduction into the SEM chamber. Figure 4 shows that the samples with and without
polarization treatment both show a regular grain shape and uniformly dense NiO particles
without obvious cracks, indicating the polarization treatment had little effect on the surface
structure. In particular, as shown in the cross-section images (Figure S4), the NiO films
obtained by the E-beam evaporation method exhibit columnar-like crystals, endowing
them with a larger specific surface area than that prepared by other methods such as
magnetron sputtering [22]. The large surface morphology is due to more reactive sites,
which can enhance the effect of ion insertion/extraction in the film, thereby improving the
coloration efficiency.
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The crystallization of NiO at different polarization times and original films was
characterized by XRD, and it was found that the unpolarized and polarized NiO are both
crystals with fcc-structures. Figure 5a clearly shows the diffraction peaks of ITO and NiO.
The peaks of ITO mainly appear in 2θ = 30.5◦ (222), 50.9◦ (440), and 60.5◦ (622), which is
consistent with the JCPDS card (65-3170). The diffraction peaks of NiO mainly appear in
2θ = 37.3◦ (110), 43.3◦ (200), and 62.9◦ (220), corresponding to JCPDS card (04-0835) [23].
However, it should be noted that thin and heavily disordered hydrogen-containing species,
which are not visible by XRD, normally formed on the NiO grain surface. All of the results
indicate that the polarization treatment does not change the fcc-crystal structure. However,
the relatively low diffraction intensity of the film polarized eight times compared to that of
others indicates further anodic polarization may damage the NiO film. This hypothesis
is also supported by the relatively low optical modulation in Figure 1b and coloration
efficiency in Figure 3. As shown in Figure 5b, a shift of the diffraction peak of NiO (220)
plane is visible, indicating that stress is present as a result of the anodic polarization. The
shift can also be detected for the (200) diffraction peak (Figure S5). As noted, there are
hydroxides on the surface of NiO in the initial state, and treatment will decompose or
transform these hydroxides into other species. The following processes would occur at
the initial anodic polarizations where the positive ions are removed and negative ions are
absorbed at the Ni sites:

Ni(OH)2 ↔ NiOOH + H+ + e− (1)

Ni(OH)2 + OH− ↔ NiOOH + H2O+e− (2)

NiO + ClO4
− ↔ NiO•ClO4

− (absorbed) (3)

LiyNiO↔ NiO + yLi+ + ye− (4)
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Figure 5. (a) XRD patterns of NiO films in original state and different anodic polarization times. (b) The dynamic change of
(220) planes during the anodic polarization process.

The exact portion of each process is unclear; however, it can be noted that an increase
in the Ni3+ is inevitable, as shown in Figure 6 from the XPS data. This is discussed
below. After anodic polarization four times, a blue shift of the (220) peak indicates the
NiO lattice is expanded. This is very likely due to Reaction (1), in which Ni(OH)2 at the
NiO grain surface is transformed into NiOOH while releasing the H+. Granqvist et al.
also observed a blue shift of the (220) peak when cycling NiO in KOH [24]. As shown
in Figure 1, each polarization is performed after 100 CV cycles where Reactions (3) and
(4) are dominating during the CV cycling. It has been reported that the shift (220) peak
to a high angle is associated with irreversible Li insertion [24–26], which is similar to our
case in which some Li+ ions are irreversibly staying in the NiO matrix. AFM is employed
to investigate the surface roughness and morphology of the NiO films upon cycling and
anodic polarization (Figure 7). It can be seen that, although there is no evident change
from the SEM images, the micron-structure of the NiO and its surface roughness have
significant variation. More specifically, the surface roughness after two anodic polarization
treatments increases from 4.51 to 6.87 nm, and more importantly, further CV cycling and
anodic polarization treatments gradually reduce its roughness to 6.01 nm. Furthermore,
the overall surface morphology changes from a small island structure to a blurrier structure
upon cycling and anodic polarization. However, we are unable to distinguish whether
cycling or anodic polarization plays a more significant role at the current stage.

The XPS measurement of NiO films was undertaken to confirm the valence state
information of NiO films. The O1s XPS spectra of the original and polarized NiO films
are shown in Figure S6. O1s states in oxide phases of NiO give two peaks centered at
528.6 and 530.4 eV. The peak at 528.6 eV is ascribed to Ni2+. The peak at 530.4 eV is from
the Ni3+ species [27]. In the hydrogen containing phases of (Ni(OH)2)3•2H2O, the O1s
peak is located at approximately 532 eV [28,29]. As shown in Figure 7a–d, the peak at
approximately 528.6 eV decreases in intensity upon the treatment of polarization. This
change of intensity can be attributed to the more Ni3+ active sites exposed in the polarized
films. The transformation of nickel oxide to hydroxide may involve the excess oxygen
present in the films from the beginning. In addition, the red-shift phenomenon of the
two peaks (Figure S7) also confirms the above-mentioned mechanism. On this basis, we
calculated the proportion of different valence ions, which is illustrated in the Figure S7.
The ratio of Ni2+/Ni3+ changes from 0.516 (original film) to 0.688 (anodic polarization two
times), 0.792 (anodic polarization four times), and 0.968 (anodic polarization eight times).
This indicates polarized films are suitable for electrochromism due to the presence of an
enhanced amount of Ni3+. In addition, the signal of element Cl was also detected from
the XPS measurement (Figure 7e), indicating the anodic polarization forces the ClO4

- to
attach to the Ni sites, which is in very good agreement with Reaction (3). These elemental
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analysis results further prove that polarization treatment can improve the electrochromic
effect of NiO film.
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polarization: two times, four times, and eight times.
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(24.5 cm2/C) were achieved in the optimized NiO films. XRD, SEM, and XPS were used to
characterize the crystallinity, surface structure, and composition, respectively. In addition,
the XPS results indicate that anodic polarization can generate more Ni3+ species, which
are essential for the improvement of EC performance. Moreover, the lattice stress in NiO
films can also have an effect on the improvement of EC properties. This study provides an
easy and effective approach to fabrication of NiO films with high EC performance, which
is attractive for further commercialization of EC devices.
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