Effect of Doping of Cd1−xZnxS/ZnS Core/Shell Quantum Dots in Negative Dielectric Anisotropy Nematic Liquid Crystal p-Methoxybenzylidene p-Decylaniline
Abstract
:1. Introduction
2. Experimental Details
Preparation of Homogenous Mixture of CSQDs and MBDA Composites
3. Results and Discussion
3.1. Polarizing Optical Micrographs
3.2. Dielectric Response and Dielectric Anisotropy
3.2.1. Field-Induced Reorientation of Liquid Crystal in QD Doped Sample
3.2.2. Dielectric Response at Planar Geometry
3.2.3. Dielectric Response at Homeotropic Geometry
3.2.4. Dielectric Anisotropy and Mean Dielectric Constant
3.3. Electro-Optical Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Peng, F.; Yamaguchi, T.; Song, X.; Wu, S.-T. High Performance Negative Dielectric Anisotropy Liquid Crystals for Display Applications. Crystals 2013, 3, 483–503. [Google Scholar]
- Kirsch, P.; Heckmeier, M.; Tarumi, K. Design and synthesis of nematic liquid crystals with negative dielectric anisotropy. Liq. Cryst. 1999, 26, 449–452. [Google Scholar] [CrossRef]
- Kirsch, P.; Reiffenrath, V.; Bremer, M. Nematic liquid crystals with negative dielectric anisotropy: Molecular design and synthesis. Synlett 1999, 1999, 389–396. [Google Scholar] [CrossRef]
- Hird, M.; Goodby, J.W.; Toyne, K.J. Nematic materials with negative dielectric anisotropy for display applications. Proc. SPIE 2000, 3955, 15–23. [Google Scholar]
- Ge, Z.; Zhu, X.; Wu, T.X.; Wu, S.T. High transmittance in-plane switching liquid crystal displays. J. Disp. Technol. 2006, 2, 114–120. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Z.; Peng, F.; Wu, S.T. Fringe-field switching with a negative dielectric anisotropy liquid crystal. J. Disp. Technol. 2013, 9, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Kahn, F.J. Electric-field-induced orientational deformation of nematic liquid-crystals: Tunable birefringence. Appl. Phys. Lett. 1972, 20, 199–201. [Google Scholar] [CrossRef]
- Takeda, A.; Kataoka, S.; Sasaki, T.; Chida, H.; Tsuda, H.; Ohmuro, K.; Sasabayashi, T.; Koike, Y.; Okamoto, K. A Super-High Image Quality Multi-Domain Vertical Alignment LCD by New Rubbing-Less Technology; SID Symposium Digest of Technical Papers; Blackwell Publishing Ltd.: Oxford, UK, 1998; Volume 29, pp. 1077–1080. [Google Scholar]
- Yun, H.J.; Jo, M.H.; Jang, I.W.; Lee, S.H.; Ahn, S.H.; Hur, H.J. Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy. Liq. Cryst. 2012, 39, 1141–1148. [Google Scholar] [CrossRef]
- Basu, R.; Iannacchione, G.S. Evidence for directed self-assembly of quantum dots in a nematic liquid crystal. Phys. Rev. E 2009, 80, 010701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; Singh, D.P.; Manohar, R.; Kumar, S. Tuning phase retardation behaviour of nematic liquid crystal using quantum dots. Curr. Appl. Phys. 2016, 16, 79. [Google Scholar] [CrossRef]
- Seidalilir, Z.; Soheyli, E.; Sabaeian, M.; Sahraei, R. Enhanced electrochemical and electro-optical properties of nematic liquid crystal doped with Ni:ZnCdS/ZnS core/shell quantum dots. J. Molliq. 2020, 320, 114373. [Google Scholar]
- Misra, A.K.; Tripathi, P.K.; Pandey, K.K.; Singh, B.P.; Manohar, R. Dielectric properties and activation energies of Cu:ZnO dispersed nematic mesogenN-(4-methoxybenzylidene)-4-butylaniline liquid crystal. J. Dispers. Sci. Technol. 2020, 41, 1283–1290. [Google Scholar] [CrossRef]
- Singh, S. Impact of Dispersion of Nanoscale Particles on the Properties of Nematic Liquid Crystals. Crystals 2019, 9, 475. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, A.; Manohar, R. Effect of graphene oxide dispersion in nematic mesogen and their characterization results. Appl. Phy. A 2019, 125, 192. [Google Scholar] [CrossRef]
- Rastogi, A.; Pathak, G.; Srivastava, A.; Herman, J.; Manohar, R. Cd1−XZnXS/ZnS core/shell quantum dots in nematic liquid crystals to improve material parameter for better performance of liquid crystal based devices. J. Molliq. 2018, 255, 93–101. [Google Scholar]
- Pandey, S.; Vimal, T.; Singh, D.P.; Gupta, S.K.; Tripathi, P.; Phadnis, C.; Mahamuni, S.; Srivastava, A.; Manohar, R. Cd1-xZnxS/ZnS core/shell quantum dot ferroelectric liquid crystal composite system: Analysis of faster optical response and lower operating voltage. Liq. Cryst. 2014, 41, 1811–1820. [Google Scholar] [CrossRef]
- Singh, D.P.; Pandey, S.; Gupta, S.K.; Manohar, R.; Daoudi, A.; Sahraoui, A.H.; Phadnis, C.; Mahamuni, S. Quenching of photoluminescence and enhanced contrast of ferroelectric liquid crystal dispersed with Cd1−XZnXS/ZnS nanocrystals. J. Lumin. 2016, 173, 250. [Google Scholar] [CrossRef]
- Tripathi, P.K.; Joshi, B.; Singh, S. Pristine and quantum dots dispersed nematic liquid crystal. Impact of dispersion and applied voltage on dielectric and electro-optical properties. Opt. Mater. 2017, 69, 61–66. [Google Scholar] [CrossRef]
- Petrescu, E.; Cirtoaje, C.; Danila, O. Dynamic behavior of nematic liquid crystal mixtures with quantum dots in electric fields. Beilstein J. Nanotechnol. 2018, 9, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Bae, W.K.; Nam, M.K.; Char, K.; Lee, S. Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1−xZnxS/ZnS nanocrystals. Chem. Mater. 2008, 20, 5307–5313. [Google Scholar] [CrossRef]
- Bera, D.; Qian, L.; Kuan Tseng, T.; Holloway, P.H. Quantum dots and their multimodal applications: A review. Materials 2010, 3, 2260–2345. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, A.; Pandey, F.P.; Parmar, A.S.; Singh, S.; Hegde, G.; Manohar, R. Effect of carbonaceous oil palm leaf quantum dot dispersion in nematic liquid crystal on zeta potential, optical texture and dielectric properties. J. Nanostruct. Chem. 2021. [Google Scholar] [CrossRef]
- Rastogi, A.; Hegde, G.; Manohar, T.; Manohar, R. Effect of oil palm leaf–based carbon quantum dot on nematic liquid crystal and its electro–optical effects. Liq. Cryst. 2020, 48, 12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastogi, A.; Pandey, F.; Manohar, R.; Singh, S. Effect of Doping of Cd1−xZnxS/ZnS Core/Shell Quantum Dots in Negative Dielectric Anisotropy Nematic Liquid Crystal p-Methoxybenzylidene p-Decylaniline. Crystals 2021, 11, 605. https://doi.org/10.3390/cryst11060605
Rastogi A, Pandey F, Manohar R, Singh S. Effect of Doping of Cd1−xZnxS/ZnS Core/Shell Quantum Dots in Negative Dielectric Anisotropy Nematic Liquid Crystal p-Methoxybenzylidene p-Decylaniline. Crystals. 2021; 11(6):605. https://doi.org/10.3390/cryst11060605
Chicago/Turabian StyleRastogi, Ayushi, Fanindra Pandey, Rajiv Manohar, and Shri Singh. 2021. "Effect of Doping of Cd1−xZnxS/ZnS Core/Shell Quantum Dots in Negative Dielectric Anisotropy Nematic Liquid Crystal p-Methoxybenzylidene p-Decylaniline" Crystals 11, no. 6: 605. https://doi.org/10.3390/cryst11060605
APA StyleRastogi, A., Pandey, F., Manohar, R., & Singh, S. (2021). Effect of Doping of Cd1−xZnxS/ZnS Core/Shell Quantum Dots in Negative Dielectric Anisotropy Nematic Liquid Crystal p-Methoxybenzylidene p-Decylaniline. Crystals, 11(6), 605. https://doi.org/10.3390/cryst11060605