Effect of High Pressure on the Solidification of Al–Ni Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results
The Stable Growing Wavelength of Intermetallic Compound Al3Ni with Nil Solid Solubility
4. Phase Selection under High Pressure
5. Potential Energy of Hypo-Eutectic Al–Ni Alloy at Different Pressures
6. Conclusions
- (1)
- When the initial concentration of the Al–Ni alloy is lower than 25at.%Ni, no constitutional undercooling exists at the frontier of the Al3Ni solid–liquid interface.
- (2)
- Under the effect of high pressure, the interface temperature of the Al3Ni2 phase is lower than that of the Al3Ni phase.
- (3)
- The Debye temperatures of Al–38wt.%Ni alloys synthesized under ambient pressure, 2 GPa, and 4 GPa are 504.4 K, 508.71 K and 515.36 K, respectively. The potential energy in the lowest point decreases with the increase of pressure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pope, D.P.; Ezz, S.S. Mechanical Properties of Ni3Al and Nickel-Base Alloys with High Volume Fraction of γ′. Int. Met. Rev. 1984, 29, 136–167. [Google Scholar] [CrossRef]
- Wolfenstine, J.; Kim, H.K.; Earthman, J.C. Creep characteristics of single crystalline Ni3Al(Ta,B). Met. Mater. Trans. A 1994, 25, 2477–2482. [Google Scholar] [CrossRef]
- Li, G.Y.; Jiang, W.M.; Guan, F.; Zhu, J.W.; Zhang, Z.; Fan, Z.T. Microstructure, Mechanical Properties and Corrosion Resistance of A356 Aluminum/AZ91D Magnesium Bimetal Prepared by a Compound Casting Combined with a Novel Ni-Cu Composite In-Terlayer. J. Mater. Process Tech. 2021, 288, 116874. [Google Scholar] [CrossRef]
- Liu, C.T. Recent Advances in Ordered Intermetallics. Mater. Chem. Phys. 1995, 42, 77–86. [Google Scholar] [CrossRef]
- Wen, B.; Zhao, J.; Bai, F.; Li, T. First-Principle Studies of Al–Ru Intermetallic Compounds. Intermet. 2008, 16, 333–339. [Google Scholar] [CrossRef]
- Hilpert, K.; Kobertz, D.; Venugopal, V.; Miller, M.; Gerads, H.; Bremer, F.J.; Nickel, H. Phase Diagram Studies on the Al- Ni System. Zeitschrift für Naturforschung A 1987, 42, 1327–1332. [Google Scholar] [CrossRef]
- Pasturel, A.; Colinet, C.; Paxton, A.; Van Schilfgaarde, M. First-Principles Determination of the Ni-Al Phase Diagram. J. Phys. Condens. Matter 1992, 4, 945–959. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Zou, C.; Wei, Z.; Uwatoko, Y.; Gouchi, J.; Nishio-Hamane, D.; Gotou, H. The Effects of High Pressure and Superheating on the Planar Growth of Al3Ni Phase in Hypo-Peritectic Al-30wt%Ni Alloy. J. Alloys Compd. 2019, 772, 1052–1060. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Wei, Z.; Zou, C. Al3Ni Alloy Synthesized at High Pressures and its Debye Temperature. J. Alloys Compd. 2019, 774, 364–369. [Google Scholar] [CrossRef]
- Zhai, W.; Wei, B. Direct Nucleation and Growth of Peritectic Phase Induced by Substantial Undercooling Condition. Mater. Lett. 2013, 108, 145–148. [Google Scholar] [CrossRef]
- Gegner, J.; Shuleshova, O.; Kobold, R.; Holland-Moritz, D.; Yang, F.; Hornfeck, W.; Bednarcik, J.; Herlach, D.M. In Situ Observation of The Phase Selection from the Undercooled Melt in Cu-Zr. J. Alloys Compd. 2013, 576, 232–235. [Google Scholar] [CrossRef]
- Kubin, L.; Estrin, Y. The Portevin-Le Chatelier Effect in Deformation with Constant Stress Rate. Acta Met. 1985, 33, 397–407. [Google Scholar] [CrossRef]
- Caroli, B.; Caroli, C.; Roulet, B. Interface Kinetics and Solidification of Alloys: A Discussion of Some Phenomenological Models. Acta Met. 1986, 34, 1867–1877. [Google Scholar] [CrossRef]
- Fredriksson, H. Metals Handbook, 1st ed.; ASM: Materials Park, OH, USA, 1988. [Google Scholar]
- Gill, S.C.; Kurz, W. Rapidly Solidified Al–Cu Alloys—II. Calculation of The Microstructure Selection Map. Acta Metall. Mater. 1995, 43, 139–151. [Google Scholar] [CrossRef]
- Umeda, T.; Okane, T.; Kurz, W. Phase Selection During Solidification of Peritectic Alloys. Acta Mater. 1996, 44, 4209–4216. [Google Scholar] [CrossRef]
- Vandyoussefi, M.; Kerr, H.; Kurz, W. Two-Phase Growth in Peritectic Fe–Ni Alloys. Acta Mater. 2000, 48, 2297–2306. [Google Scholar] [CrossRef]
- Boettinger, W.; Coriell, S.R.; Trivedi, R. Rapid Solidification Processing: Principles and Technologies IV; Mehrabian, R., Parrish, P.A., Eds.; Claitor: Baton Rouge, LA, USA, 1988. [Google Scholar]
- Lipton, J.; Glicksman, M.; Kurz, W. Dendritic Growth into undercooled alloy metals. Mater. Sci. Eng. 1984, 65, 57–63. [Google Scholar] [CrossRef]
- Lipton, J.; Kurz, W.; Trivedi, R. Rapid Dendrite Growth in Undercooled Alloys. Acta Met. 1987, 35, 957–964. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.; Su, Y.; Luo, L.; Guo, J.; Fu, H. Solute Redistribution During Planar Growth of Intermetallic Compound with Nil Solubility. Intermet. 2012, 26, 131–135. [Google Scholar] [CrossRef]
- Ma, P.; Zou, C.; Wang, H.; Scudino, S.; Fu, B.; Wei, Z.; Kühn, U.; Eckert, J. Effects of High Pressure and SiC Content on Microstructure and Precipitation Kinetics of Al–20Si Alloy. J. Alloys Compd. 2014, 586, 639–644. [Google Scholar] [CrossRef]
- Liu, X.; Ma, P.; Jia, Y.D.; Wei, Z.J.; Suo, C.J.; Ji, P.C.; Shi, X.R.; Yu, Z.S.; Prashanth, K.G. Solidification of Al-xCu Alloy under High Pressures. J. Mater. Res. Technol. 2020, 9, 2983–2991. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, D.; Zou, C.; Wei, Z. Evolution of the Microstructure and Nanohardness of Ti–48at.%Al Alloy Solidified under High Pressure. Mater. Des. 2012, 34, 488–493. [Google Scholar] [CrossRef]
- Huang, X.R.; Han, Z.Q.; Liu, B.C. Study on the Effect of Pressure on the Equilibrium and Stability of the Solid-liquid Interface in Solidification of Binary Alloys. Sci. China Tech. Sci. 2011, 54, 479–483. [Google Scholar] [CrossRef]
- Emuna, M.; Greenberg, Y.; Hevroni, R.; Korover, I.; Yahel, E.; Makov, G. Phase Diagrams of Binary Alloys under Pressure. J. Alloys Compd. 2016, 687, 360–369. [Google Scholar] [CrossRef]
- Zhou, W.; Shen, Z.; Yin, X.; Zhang, Y.; Zhao, M. Effects of Pressure on the Eutectic or Eutectoid Temperatures of the Cd–Pb, Cd–Sn, Pb–Sn and Cd–Pb-Sn Systems. J. Less Common Met. 1988, 143, 59–69. [Google Scholar] [CrossRef]
- Siethoff, H. Debye Temperature, Self-Diffusion and Elastic Constants of Intermetallic Compounds. Intermet. 1997, 5, 625–632. [Google Scholar] [CrossRef]
- Kumar, V.; Jha, V.; Shrivastava, A.K. Debye Temperature and Melting Point of II–VI and III–V semiconductors. Cryst. Res. Technol. 2010, 45, 920–924. [Google Scholar] [CrossRef]
- Lindemann, F.A. The Calculation of Molecular Natural Frequencies. Phys. Z. 1910, 11, 609–612. [Google Scholar]
- Daoud, S. Simplifified Expressions for Calculating Debye Temperature and Melting Point of II–VI and III–V Semiconductors. J. Pharmacol. Exp. Ther. 2015, 3, 275–279. [Google Scholar]
- Abrahams, S.C.; Hsu, F.S.L. Debye Temperatures and Cohesive Properties. J. Chem. Phys. 1975, 63, 1162–1165. [Google Scholar] [CrossRef]
- Kurz, W.; Fisher, D. Fundamentals of Solidification; Trans Tech. Publ. Ltd.: Uetikon-Zuerich, Switzerland, 1998. [Google Scholar]
- Wolfram Research, Mathematica’s Element Data function. Available online: https://periodictable.com/Properties/A/FusionHeat.an.html (accessed on 20 April 2021).
- Stüber, S.; Holland-Moritz, D.; Unruh, T.; Meyer, A. Ni Self-Diffusion in Refractory Al–Ni Melts. Phys. Rev. B 2010, 81, 024204. [Google Scholar] [CrossRef]
- Xie, Y.Q. New Potential Energy Functions for Multi-Atomic Interaction in Solid. Chin. Sci. 1992, 8, 880–890. (In Chinese) [Google Scholar]
- Benenson, W.; Harris, J.W.; Stocker, H.; Lutz, H. Handbook of Physics, 2nd ed.; Springer-Verlag: New York, NY, USA, 2006. [Google Scholar]
- Mei, P. Interrelation Among Bond Energy, Melting Point, and Boiling Point of Metals. J. Jianghan Univ. 1991, 8, 68–70. (In Chinese) [Google Scholar]
- Xu, S.Q. A Method for Calculating the Thermal Expansion Coefficient of Metals. J. Shanghai Nonferr. Metal 1980, 6, 78–88. (In Chinese) [Google Scholar]
Physical Quantities | Symbol (unit) |
---|---|
z’—distance to the solid-liquid (S-L) interface | m |
z—distance to the beginning of solidification | m |
D—diffusion coefficient | m2/s |
V—solidification velocity | m/s |
—initial alloy concentration | at.% |
CL—The solute distribution at the frontier of Al3Ni interface | at.% |
—liquid composition at S- L interface | at.% |
—Al3Ni concentration | at.% |
—melting temperature | K |
G—actual temperature gradient in front of S-L interface | K/m |
Γ—Gibbs Thompson coefficient | K·m |
—velocity of the perturbation interface | m/s |
a—thermal diffusivity | m2/s |
—curvature | /m |
—latent heat of the metal | J/mol |
—sound speed in the liquid | m/s |
—gas constant | J/mol·K |
—latent heat of fusion | J/m3 |
c—volumetric specific heat | J/m3·K |
R—radius of the dendrite tip | m |
—the undercooling of the dendrite tip | K |
—liquidus temperature | K |
—heat undercooling | K |
—solute undercooling | K |
—curvature undercooling | K |
—kinetic undercooling | K |
—liquid slop under high pressure | K/at.% |
—stability constant = 1/4π2 | - |
—solute stability parameter | - |
—solute stability parameter | - |
—solutal Ivantsov function | - |
—thermal Péclet number = VR/2a | - |
—solute Péclet number = VR/2D | - |
-kinetic coefficient | - |
—function related to Péclet number | - |
—function related to Péclet number | - |
Physical Quantities | Symbol (unit) | Al–38wt.%Ni |
---|---|---|
Liquidus temperature | TL (K) | 1240 |
Density (Alsolid) a | ρSAl (g/cm3) | 2.7 |
Density (Alliquid) a | ρLAl (g/cm3) | 2.375 |
Density (Nisolid) a | ρSNi (g/cm3) | 8.908 |
Density (Niliquid) a | ρLNi (g/cm3) | 7.81 |
Thermal conductivity of Al a | κAl (W/m·K) | 235 |
Thermal conductivity of Ni a | κNi (W/m·K) | 91 |
Mole specific heat | CP (J/mol·K) | 29.3 |
Liquidus slope of β | mLβ (K/%) | 18.5 |
Diffusion coefficient | DL (m2/s) | 1 × 10−7 exp(−6.02 × 10−20/kB·T) [35] |
Parameter | Ambient Pressure | 1 GPa | 2 GPa | 3 GPa | 4 GPa |
---|---|---|---|---|---|
Linear expansion coefficient (×10−6 °C−1) | 19.98 | 9.56 | 8.98 | 8.48 | 8.05 |
Bond energy (KJ/mol) | 261.0 | 274.0 | 287.0 | 380.1 | 313.2 |
Bulk modulus (GPa) | 87.8371 | 94.794 | 101.68 | 108.57 | 115.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.-H.; Dong, D.; Yang, X.-H. Effect of High Pressure on the Solidification of Al–Ni Alloy. Crystals 2021, 11, 478. https://doi.org/10.3390/cryst11050478
Wang X-H, Dong D, Yang X-H. Effect of High Pressure on the Solidification of Al–Ni Alloy. Crystals. 2021; 11(5):478. https://doi.org/10.3390/cryst11050478
Chicago/Turabian StyleWang, Xiao-Hong, Duo Dong, and Xiao-Hong Yang. 2021. "Effect of High Pressure on the Solidification of Al–Ni Alloy" Crystals 11, no. 5: 478. https://doi.org/10.3390/cryst11050478
APA StyleWang, X.-H., Dong, D., & Yang, X.-H. (2021). Effect of High Pressure on the Solidification of Al–Ni Alloy. Crystals, 11(5), 478. https://doi.org/10.3390/cryst11050478