High Mobility Reactive Sputtered CuxO Thin Film for Highly Efficient and Stable Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methodology
3. Results and Discussion
4. Device Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qidong, T.; Tang, K.-C.; Yan, F. Recent Progress of Inorganic Perovskite Solar Cells. Energy Environ. Sci. 2019, 12, 2375–2405. [Google Scholar]
- Ibn-Mohammed, T.; Koh, S.C.L.; Reaney, I.M.; Acquaye, A.; Schileo, G.; Mustapha, K.B.; Greenough, R. Perovskite Solar Cells: An Integrated Hybrid Lifecycle Assessment and Review in Comparison with Other Photovoltaic Technologies. Renew. Sustain. Energy Rev. 2017, 80, 1321–1344. [Google Scholar] [CrossRef]
- Ball, J.M.; Stranks, S.D.; Hörantner, M.T.; Hüttner, S.; Zhang, W.; Crossland, E.J.W.; Ramirez, I.; Moritz, R.; Johnston, M.B.; Friend, R.H.; et al. Optical Properties and Limiting Photocurrent of Thin-Film Perovskite Solar Cells. Energy Environ. Sci. 2015, 8, 602–609. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, T.; Yu, T.; Zhu, X.; Tu, Y. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. J. Nanomater. 2018, 2018, 8148072. [Google Scholar] [CrossRef]
- Bhat, A.; Dhamaniya, B.P.; Chhillar, P.; Korukonda, T.B.; Rawat, G.; Pathak, S.K. Analysing the Prospects of Perovskite Solar Cells within the Purview of Recent Scientific Advancements. Crystals 2018, 8, 242. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.X. Beyond PCE: Looking at a Big Picture in Photovoltaic Research. ACS Energy Lett. 2018, 3, 1967–1968. [Google Scholar] [CrossRef] [Green Version]
- Malinkiewicz, O.; Yella, A.; Lee, Y.H.; Espallargas, G.M.; Graetzel, M.; Nazeeruddin, M.K.; Bolink, H.J. Perovskite Solar Cells Employing Organic Charge-Transport Layers. Nat. Photonics 2014, 8, 128–132. [Google Scholar] [CrossRef]
- Zhu, Z.; Bai, Y.; Zhang, T.; Liu, Z.; Long, X.; Wei, Z.; Wang, Z.; Zhang, L.; Wang, J.; Yan, F.; et al. High-Performance Hole-Extraction Layer of Sol–Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angew. Chem. 2014, 126, 12779–12783. [Google Scholar] [CrossRef]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Il Seok, S.; McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for Commercializing Perovskite Solar Cells. Science 2018, 361, 6408. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 16995–17000. [Google Scholar] [CrossRef]
- Wang, K.C.; Jeng, J.Y.; Shen, P.S.; Chang, Y.C.; Diau, E.W.G.; Tsai, C.H.; Chao, T.Y.; Hsu, H.C.; Lin, P.Y.; Chen, P.; et al. P-Type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Sci. Rep. 2014, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C. CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Lett. 2015, 15, 3723–3728. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, A.C.; Fung, R.C.M.; Kamat, P.V. An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. J. Am. Chem. Soc. 2014, 136, 758–764. [Google Scholar]
- Wu, Z.; Bai, S.; Xiang, J.; Yuan, Z.; Yang, Y.; Cui, W.; Gao, X.; Liu, Z.; Jin, Y.; Sun, B. Efficient Planar Heterojunction Perovskite Solar Cells Employing Graphene Oxide as Hole Conductor. Nanoscale 2014, 6, 10505–10510. [Google Scholar] [CrossRef]
- Zuo, C.; Ding, L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small 2015, 11, 5528–5532. [Google Scholar] [CrossRef]
- Jiang, T.; Xie, T.; Zhang, Y.; Chen, L.; Peng, L.; Li, H.; Wang, D. Photoinduced Charge Transfer in ZnO/Cu2O Heterostructure Films Studied by Surface Photovoltage Technique. Phys. Chem. Chem. Phys. 2010, 12, 15476–15481. [Google Scholar] [CrossRef]
- Chatterjee, S.; Pal, A.J. Introducing Cu2O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures. J. Phys. Chem. C 2016, 120, 1428–1437. [Google Scholar] [CrossRef]
- Joseph, S.; Kamath, P.V. Electrochemical Deposition of Cu2O on Stainless Steel Substrates: Promotion and Suppression of Oriented Crystallization. Solid State Sci. 2008, 10, 1215–1221. [Google Scholar] [CrossRef]
- Fujiwara, T.; Nakaue, T.; Yoshimura, M. Direct Fabrication and Patterning of Cu2O Film by Local Electrodeposition Method. Solid State Ion. 2004, 175, 541–544. [Google Scholar] [CrossRef]
- Chen, L.C.; Wang, C.C.; Lu, S.W. Annealing Effects of Sputtered Cu2O Nanocolumns on ZnO-Coated Glass Substrate for Solar Cell Applications. J. Nanomater. 2013, 2013, 891365. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Cadena, G.; Comini, E.; Ferroni, M.; Sberveglieri, G. Synthesis of Cu2O Bi-Pyramids by Reduction of Cu(OH)2 in Solution. Mater. Lett. 2010, 64, 469–471. [Google Scholar] [CrossRef]
- Nordseth, Ø.; Kumar, R.; Bergum, K.; Chilibon, I.; Foss, S.E.; Monakhov, E. Nitrogen-Doped Cu2O Thin Films for Photovoltaic Applications. Materials 2019, 12, 3038. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Li, Y.; Ye, S.; Rao, H.; Yan, W.; Peng, H.; Li, Y.; Liu, Z.; Wang, S.; Chen, Z.; et al. High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed CuO x Hole Transport Layer. Nanoscale 2016, 8, 10806–10813. [Google Scholar] [CrossRef]
- Dubale, A.A.; Pan, C.J.; Tamirat, A.G.; Chen, H.M.; Su, W.N.; Chen, C.H.; Rick, J.; Ayele, D.W.; Aragaw, B.A.; Lee, J.F.; et al. Heterostructured Cu2O/CuO Decorated with Nickel as a Highly Efficient Photocathode for Photoelectrochemical Water Reduction. J. Mater. Chem. A 2015, 3, 12482–12499. [Google Scholar] [CrossRef]
- Murali, D.S.; Kumar, S.; Choudhary, R.J.; Wadikar, A.D.; Jain, M.K.; Subrahmanyam, A. Synthesis of Cu2O from CuO Thin Films: Optical and Electrical Properties. AIP Adv. 2015, 5, 047143. [Google Scholar] [CrossRef]
- Gupta, D.; Meher, S.R.; Illyaskutty, N.; Alex, Z.C. Facile Synthesis of Cu2O and CuO Nanoparticles and Study of Their Structural, Optical and Electronic Properties. J. Alloys Compd. 2018, 743, 737–745. [Google Scholar] [CrossRef]
- Nakano, Y.; Saeki, S.; Morikawa, T. Optical Bandgap Widening of p-type Cu2O Films by Nitrogen Doping. Appl. Phys. Lett. 2009, 94, 022111. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Rahman, K.S.; Misran, H.; Asim, N.; Hossain, M.S.; Akhtaruzzaman, M.; Amin, N. High Mobility and Transparent ZTO ETM Prepared by RF Reactive Co-Sputtering for Perovskite Solar Cell Application. Results Phys. 2019, 14, 102518. [Google Scholar] [CrossRef]
- Moshfegh, A.Z.; Azimirad, R.; Akhavan, O. Optical Properties and Surface Morphology of Evaporated (WO3)1− x–(Fe2O3)x Thin Films. Thin Solid Film. 2005, 484, 124–131. [Google Scholar] [CrossRef]
- Islam, M.A.; Misran, H.; Akhtaruzzaman, M.; Amin, N. Influence of Oxygen on Structural and Optoelectronic Properties of CdS Thin Film Deposited by Magnetron Sputtering Technique. Chin. J. Phys. 2020, 67, 170–179. [Google Scholar] [CrossRef]
- Ishizuka, S.; Suzuki, K.; Okamoto, Y.; Yanagita, M.; Sakurai, T.; Akimoto, K.; Fujiwara, N.; Kobayashi, H.; Matsubara, K.; Niki, S. Polycrystalline n-ZnO/p-Cu2O Heterojunctions Grown by RF-Magnetron Sputtering. Phys. Status Solidi (c) 2004, 1, 1067–1070. [Google Scholar] [CrossRef]
- Diwald, O.; Thompson, T.L.; Zubkov, T.; Goralski, E.G.; Walck, S.D.; Yates, J.T. Photochemical Activity of Nitrogen-Doped Rutile TiO2 (110) in Visible Light. J. Phys. Chem. B 2004, 108, 6004–6008. [Google Scholar] [CrossRef]
- Akaltun, Y.; Yıldırım, M.A.; Ateş, A.; Yıldırım, M. Zinc Concentration Effect on Structural, Optical and Electrical Properties of Cd1− xZnxSe Thin Films. Mater. Res. Bull. 2012, 47, 3390–3396. [Google Scholar] [CrossRef]
- Hannachi, L.; Bouarissa, N. Band Parameters for Cadmium and Zinc Chalcogenide Compounds. Phys. B Condens. Matter 2009, 404, 3650–3654. [Google Scholar] [CrossRef]
- Mezrag, F.; Mohamed, W.K.; Bouarissa, N. The Effect of Zinc Concentration upon Optical and Dielectric Properties of Cd1− xZnxSe. Phys. B Condens. Matter 2010, 405, 2272–2276. [Google Scholar] [CrossRef]
- Akaltun, Y. Effect of Thickness on the Structural and Optical Properties of CuO Thin Films Grown by Successive Ionic Layer Adsorption and Reaction. Thin Solid Film. 2015, 594, 30–34. [Google Scholar] [CrossRef]
- Li, J.; Mei, Z.; Liu, L.; Liang, H.; Azarov, A.; Kuznetsov, A.; Liu, Y.; Ji, A.; Meng, Q.; Du, X. Probing Defects in Nitrogen-Doped Cu2O. Sci. Rep. 2014, 4, 1–6. [Google Scholar]
- Izaki, M.; Sasaki, S.; Mohamad, F.B.; Shinagawa, T.; Ohta, T.; Watase, S.; Sasano, J. Effects of Preparation Temperature on Optical and Electrical Characteristics of (111)-Oriented Cu2O Films Electrodeposited on (111)-Au Film. Thin Solid Film. 2012, 520, 1779–1783. [Google Scholar] [CrossRef]
- Liu, Y.L.; Liu, Y.C.; Mu, R.; Yang, H.; Shao, C.L.; Zhang, J.Y.; Lu, Y.M.; Shen, D.Z.; Fan, X.W. The Structural and Optical Properties of Cu2O Films Electrodeposited on Different Substrates. Semicond. Sci. Technol. 2004, 20, 44. [Google Scholar] [CrossRef]
- Yu, W.L.; Lin, Y.Z.; Zhu, X.W.; Hu, Z.G.; Han, M.J.; Cai, S.S.; Chen, L.L.; Shao, H.H. Diversity of Electronic Transitions and Photoluminescence Properties of p-type Cuprous Oxide Films: A Temperature-Dependent Spectral Transmittance Study. J. Appl. Phys. 2015, 117, 045701. [Google Scholar]
- Gan, J.; Galeckas, A.; Venkatachalapathy, V.; Riise, H.N.; Svensson, B.G.; Monakhov, E.V. Study of Photoluminescence Properties of CuxO Thin Films Prepared by Reactive Radio Frequency Magnetron Sputtering. MRS Online Proc. Libr. 2015, 1792, 1–7. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chatterjee, A.; Liu, S.B.; Wu, S.Y.; Cheng, C.L. Photoluminescence Properties of a Single Tapered CuO Nanowire. Appl. Surf. Sci. 2010, 256, 3688–3692. [Google Scholar] [CrossRef]
- Jeong, Y.K.; Choi, G.M. Nonstoichiometry and Electrical Conduction of CuO. J. Phys. Chem. Solids 1996, 57, 81–84. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Q.; Tao, M. LSDA+ U Study of Cupric Oxide: Electronic Structure and Native Point Defects. Phys. Rev. B 2006, 73, 235206. [Google Scholar] [CrossRef]
- Hu, X.; Gao, F.; Xiang, Y.; Wu, H.; Zheng, X.; Jiang, J.; Li, J.; Yang, H.; Liu, S. Influence of Oxygen Pressure on the Structural and Electrical Properties of CuO Thin Films Prepared by Pulsed Laser Deposition. Mater. Lett. 2016, 176, 282–284. [Google Scholar] [CrossRef]
- Yao, Z.Q.; Liu, S.L.; Zhang, L.; He, B.; Kumar, A.; Jiang, X.; Zhang, W.J.; Shao, G. Room Temperature Fabrication of p-channel Cu2O Thin-Film Transistors on Flexible Polyethylene Terephthalate Substrates. Appl. Phys. Lett. 2012, 101, 042114. [Google Scholar] [CrossRef]
- Hajjiah, A.; Kandas, I.; Shehata, N. Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation Study. Materials 2018, 11, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitchaiya, S.; Natarajan, M.; Santhanam, A.; Asokan, V.; Yuvapragasam, A.; Ramakrishnan, V.M.; Palanisamy, S.E.; Sundaram, S.; Velauthapillai, D. A Review on the Classification of Organic/Inorganic/Carbonaceous Hole Transporting Materials for Perovskite Solar Cell Application. Arab. J. Chem. 2020, 13, 2526–2557. [Google Scholar] [CrossRef]
- Kung, P.K.; Li, M.H.; Lin, P.Y.; Chiang, Y.H.; Chan, C.R.; Guo, T.F.; Chen, P. A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Adv. Mater. Interfaces 2018, 5, 1800882. [Google Scholar] [CrossRef]
- Zhang, W.; Song, J.; Wang, D.; Deng, K.; Wu, J.; Zhang, L. Dual Interfacial Modification Engineering with p-type NiO NanoCrystals for Preparing Efficient Planar Perovskite Solar Cells. J. Mater. Chem. C 2018, 6, 13034–13042. [Google Scholar] [CrossRef]
- Li, R.; Wang, P.; Chen, B.; Cui, X.; Ding, Y.; Li, Y.; Zhang, D.; Zhao, Y.; Zhang, X. NiOx/Spiro Hole Transport Bilayers for Stable Perovskite Solar Cells with Efficiency Exceeding 21%. ACS Energy Lett 2019, 5, 79–86. [Google Scholar] [CrossRef]
- Edri, E.; Kirmayer, S.; Henning, A.; Mukhopadhyay, S.; Gartsman, K.; Rosenwaks, Y.; Hodes, G.; Cahen, D. Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Sscaffold (But Not Necessarily a Hole Conductor). Nano Lett. 2014, 14, 1000–1004. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Yuan, Y.; Huang, J. Correlation of Energy Disorder and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. Nat. Energy 2016, 1, 1–6. [Google Scholar] [CrossRef]
- Perrier, G.; De Bettignies, R.; Berson, S.; Lemaître, N.; Guillerez, S. Impedance Spectrometry of Optimized Standard and Inverted P3HT-PCBM Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2012, 101, 210–216. [Google Scholar] [CrossRef]
- Fabregat-Santiago, F.; Garcia-Belmonte, G.; Bisquert, J.; Bogdanoff, P.; Zaban, A. Mott-Schottky Analysis of Nanoporous Semiconductor Electrodes in Dielectric State Deposited on SnO2 (F) Conducting Substrates. J. Electrochem. Soc. 2003, 150, E293. [Google Scholar] [CrossRef]
- Lin, P.Y.; Wu, T.; Ahmadi, M.; Liu, L.; Haacke, S.; Guo, T.F.; Hu, B. Simultaneously Enhancing Dissociation and Suppressing Recombination in Perovskite Solar Cells. Nano Energy 2017, 36, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Hsiao, Y.C.; Li, M.; Kang, N.G.; Mays, J.W.; Hu, B. Dynamic Coupling Between Electrode Interface and Donor/Acceptor Interface via Charge Dissociation in Organic Solar Cells at Device-Operating Condition. J. Phys. Chem. C 2015, 119, 2727–2732. [Google Scholar] [CrossRef]
- Luo, D.; Chen, Q.; Qiu, Y.; Zhang, M.; Liu, B. Device Engineering for All-Inorganic Perovskite Light-Emitting Diodes. Nanomaterials 2019, 9, 1007. [Google Scholar] [CrossRef] [Green Version]
Peak Position (111) (2θ°) | Peak Height (a.u.) | Crystallite Size (nm) | Band-Gap (eV) | Refractive Index (n) | Dielectric Constant (ε∞) | Dielectric Constant (εo) | |
---|---|---|---|---|---|---|---|
As-deposited | 36.84 | 62 | 16.06 | 2.25 | 2.63 | 6.93 | 11.59 |
20 min | 36.42 | 78 | 16.61 | 2.30 | 2.62 | 6.85 | 11.44 |
40 min | 36.12 | 85 | 17.52 | 2.34 | 2.61 | 6.79 | 11.31 |
60 min | 35.44 | 94 | 20.35 | 2.18 | 2.65 | 7.04 | 11.81 |
Open Circuit Voltage (Voc, V) | Short Circuit Current Density (Jsc, mA/cm2) | Fill Factor (FF, %) | Efficiency (η, %) | Saturation Current Density (Io, ×10−8 mA/cm2) | Ideality Factor (n) | Shunt Resistance(Rsh, kΩ) | Series Resistance (Rs, Ω) | |
---|---|---|---|---|---|---|---|---|
As-deposited | 0.95 | 25.93 | 73.43 | 18.14 | 25.5 | 2.51 | 3.21 | 110.1 |
20 m | 1.01 | 26.64 | 76.92 | 17.74 | 18.6 | 2.50 | 5.01 | 82.0 |
40 m | 1.06 | 27.14 | 78.65 | 22.56 | 8.09 | 2.28 | 3.11 | 83.3 |
60 m | 0.86 | 26.93 | 73.39 | 17.06 | 31.1 | 2.55 | 3.01 | 121.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.A.; Wahab, Y.A.; Khandaker, M.U.; Alsubaie, A.; Almalki, A.S.A.; Bradley, D.A.; Amin, N. High Mobility Reactive Sputtered CuxO Thin Film for Highly Efficient and Stable Perovskite Solar Cells. Crystals 2021, 11, 389. https://doi.org/10.3390/cryst11040389
Islam MA, Wahab YA, Khandaker MU, Alsubaie A, Almalki ASA, Bradley DA, Amin N. High Mobility Reactive Sputtered CuxO Thin Film for Highly Efficient and Stable Perovskite Solar Cells. Crystals. 2021; 11(4):389. https://doi.org/10.3390/cryst11040389
Chicago/Turabian StyleIslam, Mohammad Aminul, Yasmin Abdu Wahab, Mayeen Uddin Khandaker, Abdullah Alsubaie, Abdulraheem S. A. Almalki, David A. Bradley, and Nowshad Amin. 2021. "High Mobility Reactive Sputtered CuxO Thin Film for Highly Efficient and Stable Perovskite Solar Cells" Crystals 11, no. 4: 389. https://doi.org/10.3390/cryst11040389