Research on the Mechanical Performance of Carbon Nanofiber Reinforced Concrete under Impact Load Based on Fractal Theory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Specimen Preparation
2.2. Test Equipment and Method
3. Mechanical Properties of Dynamic Compression
3.1. Dynamic Compressive Strength
3.2. Impact Toughness
3.3. Mechanism Analysis
4. Fractal Characteristics of Impact Fragmentation Size
4.1. Impact Failure Mode and Fragmentation Size Distribution
4.2. Fractal Dimension
5. Fractal Characteristics of Microscopic Pore Structure
5.1. Fractal Model Based on Thermodynamic Relationship
5.2. Fractal Characteristics of Pore Structure
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torok, R. The 9/11 commission report and the reframing of the ‘war on terror’ as a new type of warfare. J. Polic. Intell. Count. Terror. 2011, 6, 137–150. [Google Scholar] [CrossRef]
- Bamonte, P.; Gambarova, P.G. A study on the mechanical properties of self-compacting concrete at high temperature and after cooling. Mater. Struct. Constr. 2012, 45, 1375–1387. [Google Scholar] [CrossRef] [Green Version]
- Akca, A.H.; Özyurt, N. Effects of re-curing on residual mechanical properties of concrete after high temperature exposure. Constr. Build. Mater. 2018, 159, 540–552. [Google Scholar] [CrossRef]
- Yongliang, L.; Xiangming, K.; Yanrong, Z.; Peiyu, Y. Static and Dynamic Mechanical Properties of Cement-Asphalt Compsites. J. Mater. Civ. Eng. 2013, 25, 1489–1497. [Google Scholar] [CrossRef]
- Ossa, A.; Gaxiola, A. Effect of water on the triaxial behavior under dynamic loading of asphalt concrete used in impervious barriers. Constr. Build. Mater. 2019, 208, 333–342. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, K.; Li, Y.; Huang, R.; Ye, Z.; Zhang, Y.; Ma, J. A study of strain-rate effect and fiber reinforcement effect on dynamic behavior of steel fiber-reinforced concrete. Constr. Build. Mater. 2018, 158, 657–669. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. High-Performance Fiber-Reinforced Concrete: A Review. J. Mater. Sci. 2016, 51, 6517–6551. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.; Wille, K. Comparative experimental investigations on the compressive impact behavior of fiber-reinforced ultra high-performance concretes using split Hopkinson pressure bar. Constr. Build. Mater. 2018, 191, 398–410. [Google Scholar] [CrossRef]
- Daghash, S.M.; Soliman, E.M.; Kandil, U.F.; Reda Taha, M.M. Improving Impact Resistance of Polymer Concrete Using CNTs. Int. J. Concr. Struct. Mater. 2016, 10, 539–553. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, M.; Adair, K.R.; Sun, X.; Yu, Y. Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2017, 5, 13882–13906. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, X.; Corr, D.J.; Konsta-Gdoutos, M.S.; Shah, S.P. Characterization of the interfacial transition zone of CNF-Reinforced cementitious composites. Cem. Concr. Compos. 2019, 99, 130–139. [Google Scholar] [CrossRef]
- Galao, O.; Baeza, F.J.; Zornoza, E.; Garcés, P. Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cem. Concr. Compos. 2014, 46, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Sturm, M.; Mo, Y.L. Erratum: Electrical resistance of carbon-nanofiber concrete. Smart Mater. Struct. 2009, 18, 095039. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Aza, C.A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Compos. 2014, 53, 162–169. [Google Scholar] [CrossRef]
- Meng, W.; Khayat, K.H. Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC. Cem. Concr. Res. 2018, 105, 64–71. [Google Scholar] [CrossRef]
- Sanchez, F.; Ince, C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Compos. Sci. Technol. 2009, 69, 1310–1318. [Google Scholar] [CrossRef]
- Wang, B.M.; Zhang, Y. Synthesis and properties of carbon nanofibers filled cement-based composites combined with new surfactant methylcellulose. Mater. Express 2014, 4, 177–182. [Google Scholar] [CrossRef]
- Cao, S.; Hou, X.; Rong, Q.; Zheng, W.; Abid, M.; Li, G. Effect of specimen size on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates. Constr. Build. Mater. 2019, 194, 71–82. [Google Scholar] [CrossRef]
- Ren, W.; Xu, J.; Su, H. Dynamic compressive behavior of basalt fiber reinforced concrete after exposure to elevated temperatures. Fire Mater. 2016, 40, 738–755. [Google Scholar] [CrossRef]
- Cao, S.; Hou, X.; Rong, Q. Dynamic compressive properties of reactive powder concrete at high temperature: A review. Cem. Concr. Compos. 2020, 110, 103568. [Google Scholar] [CrossRef]
- Ren, W.; Xu, J. Fractal Characteristics of Concrete Fragmentation under Impact Loading. J. Mater. Civ. Eng. 2017, 29, 04016244. [Google Scholar] [CrossRef]
- Gay, C.; Sanchez, F. Performance of carbon nanofiber-cement composites with a high-range water reducer. Transp. Res. Rec. 2010, 109–113. [Google Scholar] [CrossRef]
- Bagher Shemirani, A.; Naghdabadi, R.; Ashrafi, M.J. Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus. Constr. Build. Mater. 2016, 125, 326–336. [Google Scholar] [CrossRef]
- Nie, L.; Xu, J.; Bai, E. Dynamic stress-strain relationship of concrete subjected to chloride and sulfate attack. Constr. Build. Mater. 2018, 165, 232–240. [Google Scholar] [CrossRef]
- Lv, T.H.; Chen, X.W.; Chen, G. Analysis on the waveform features of the split Hopkinson pressure bar tests of plain concrete specimen. Int. J. Impact Eng. 2017, 103, 107–123. [Google Scholar] [CrossRef]
- Hassan, M.; Wille, K. Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique. Constr. Build. Mater. 2017, 144, 747–757. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, H. Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests. Constr. Build. Mater. 2013, 48, 521–532. [Google Scholar] [CrossRef]
- Hou, X.; Cao, S.; Zheng, W.; Rong, Q.; Li, G. Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates. Eng. Struct. 2018, 169, 119–130. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Liu, X. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry. Appl. Surf. Sci. 2006, 253, 1349–1355. [Google Scholar] [CrossRef]
- Wang, B.M.; Zhang, Y.; Liu, S. Influence of carbon nanofibers on the mechanical performance and microstructure of cement-based materials. Nanosci. Nanotechnol. Lett. 2013, 5, 1112–1118. [Google Scholar] [CrossRef]
- Xie, H.; Zhou, H.W. Application of fractal theory to top-coal caving. Chaos Solitons Fractals. 2008, 36, 797–807. [Google Scholar] [CrossRef]
- Rieu, M.; Sposito, G. Fractal Fragmentation, Soil Porosity, and Soil Water Properties: I. Theory. Soil Sci. Soc. Am. J. 1991, 55, 1231–1238. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Li, S. Determination of the Surface Fractal Dimension for Porous Media by Capillary Condensation. Ind. Eng. Chem. Res. 1997, 36, 1598–1602. [Google Scholar] [CrossRef]
Purity/ % | Diameter/ nm | Resistivity/ Ω·cm | Thermal Expansion Coefficient/℃−1 | Specific Surface Area/m2·g−1 | Density/ g·cm−3 |
---|---|---|---|---|---|
99.9 | 100~200 | <0.012 | 1 | 300 | 0.18 |
Specimen No. | Cement | Coarse Aggregate | Fine Aggregate 1 | Water | Defoaming Agent 2 | Water Reducing Agent | CNTs |
---|---|---|---|---|---|---|---|
PC | 495 | 1008 | 672 | 180 | 0 | 0 | 0 |
CNFC01 | 495 | 1008 | 672 | 180 | 0.30 | 5.0 | 0.18 |
CNFC02 | 495 | 1008 | 672 | 180 | 0.45 | 7.5 | 0.36 |
CNFC03 | 495 | 1008 | 672 | 180 | 0.60 | 10.0 | 0.54 |
CNFC05 | 495 | 1008 | 672 | 180 | 0.90 | 15.0 | 0.90 |
Sample No. | Most Probable Pore Size 1/nm | Medium Pore Diameter 2/nm | Total Pore Volume/mL·g−1 | Average Pore Size 3/nm | Pore Proportion/% | |||
---|---|---|---|---|---|---|---|---|
<10 nm | 10~100 nm | 100~1000 nm | <1000 nm | |||||
PC | 9463 | 309.10 | 0.0445 | 111.58 | 4.27 | 33.93 | 22.25 | 39.55 |
CNFC01 | 33.02 | 87.66 | 0.0403 | 72.18 | 4.08 | 47.70 | 15.26 | 32.96 |
CNFC02 | 13.92 | 31.87 | 0.0384 | 54.76 | 12.23 | 52.13 | 10.62 | 25.02 |
CNFC03 | 36.92 | 55.91 | 0.0372 | 45.90 | 4.29 | 59.68 | 14.52 | 21.51 |
CNFC05 | 53.19 | 91.15 | 0.0395 | 83.21 | 2.12 | 48.68 | 18.78 | 30.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, W.; Xu, J.; Nie, L. Research on the Mechanical Performance of Carbon Nanofiber Reinforced Concrete under Impact Load Based on Fractal Theory. Crystals 2021, 11, 387. https://doi.org/10.3390/cryst11040387
Xia W, Xu J, Nie L. Research on the Mechanical Performance of Carbon Nanofiber Reinforced Concrete under Impact Load Based on Fractal Theory. Crystals. 2021; 11(4):387. https://doi.org/10.3390/cryst11040387
Chicago/Turabian StyleXia, Wei, Jinyu Xu, and Liangxue Nie. 2021. "Research on the Mechanical Performance of Carbon Nanofiber Reinforced Concrete under Impact Load Based on Fractal Theory" Crystals 11, no. 4: 387. https://doi.org/10.3390/cryst11040387
APA StyleXia, W., Xu, J., & Nie, L. (2021). Research on the Mechanical Performance of Carbon Nanofiber Reinforced Concrete under Impact Load Based on Fractal Theory. Crystals, 11(4), 387. https://doi.org/10.3390/cryst11040387