Thermophysical Properties of Kaolin–Zeolite Blends up to 1100 °C
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Differential Thermal Analysis
3.2. Differential Scanning Calorimetry
3.3. Thermogravimetric Analysis
3.4. Thermodilatometric Analysis
3.5. Bulk Density
3.6. Thermal Diffusivity
3.7. Specific Heat Capacity
3.8. Thermal Conductivity
3.9. The Open Porosity and Scanning Electron Microscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Velasco, P.M.; Ortíz, M.M.; Giró, M.M. Fired clay bricks manufactured by adding wastes as sustainable construction material—A review. Constr. Build. Mater. 2014, 63, 97–107. [Google Scholar] [CrossRef]
- Knapek, M.; Húlan, T.; Dobroň, P.; Chmelík, F.; Trnik, A.; Štubňa, I. Acoustic Emission During Firing of the Illite-Based Ceramics with Fly Ash Addition. Acta Phys. Pol. A 2015, 128, 783–786. [Google Scholar] [CrossRef]
- Húlan, T.; Trník, A.; Kaljuvee, T.; Uibu, M.; Štubňa, I.; Kallavus, U.; Traksmaa, R. The study of firing of a ceramic body made from illite and fluidized bed combustion fly ash. J. Therm. Anal. Calorim. 2016, 127, 79–89. [Google Scholar] [CrossRef]
- Lingling, X.; Wei, G.; Tao, W.; Nanru, Y. Study on fired bricks with replacing clay by fly ash in high volume ratio. Constr. Build. Mater. 2005, 19, 243–247. [Google Scholar] [CrossRef]
- Zimmer, A.; Bergmann, C.P. Fly ash of mineral coal as ceramic tiles raw material. Waste Manag. 2007, 27, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Ongwandee, M.; Namepol, K.; Yongprapat, K.; Homwuttiwong, S.; Pattiya, A.; Morris, J.; Chavalparit, O. Coal bottom ash use in traditional ceramic production: Evaluation of engineering properties and indoor air pollution removal ability. J. Mater. Cycles Waste Manag. 2020, 22, 2118–2129. [Google Scholar] [CrossRef]
- Húlan, T.; Štubňa, I.; Ondruška, J.; Trnik, A. The Influence of Fly Ash on Mechanical Properties of Clay-Based Ceramics. Minerals 2020, 10, 930. [Google Scholar] [CrossRef]
- Sokolar, R.; Smetanova, L. Dry pressed ceramic tiles based on fly ash–clay body: Influence of fly ash granulometry and pentasodium triphosphate addition. Ceram. Int. 2010, 36, 215–221. [Google Scholar] [CrossRef]
- Kovac, J.; Trnik, A.; Medved, I.; Štubňa, I.; Vozár, L. Influence of fly ash added to a ceramic body on its thermophysical properties. Therm. Sci. 2016, 20, 603–612. [Google Scholar] [CrossRef]
- Sokolar, R.; Vodova, L. The effect of fluidized fly ash on the properties of dry pressed ceramic tiles based on fly ash–clay body. Ceram. Int. 2011, 37, 2879–2885. [Google Scholar] [CrossRef]
- Chandra, N.; Sharma, P.; Pashkov, G.; Voskresenskaya, E.; Amritphale, S.S.; Baghel, N.S. Coal fly ash utilization: Low temperature sintering of wall tiles. Waste Manag. 2008, 28, 1993–2002. [Google Scholar] [CrossRef] [PubMed]
- Haiying, Z.; Youcai, Z.; Jingyu, Q. Study on use of MSWI fly ash in ceramic tile. J. Hazard. Mater. 2007, 141, 106–114. [Google Scholar] [CrossRef]
- Pontikes, Y.; Esposito, L.; Tucci, A.; Angelopoulos, G. Thermal behaviour of clays for traditional ceramics with soda–lime–silica waste glass admixture. J. Eur. Ceram. Soc. 2007, 27, 1657–1663. [Google Scholar] [CrossRef]
- Hasan, R.; Siddika, A.; Akanda, P.A.; Islam, R. Effects of waste glass addition on the physical and mechanical properties of brick. Innov. Infrastruct. Solut. 2021, 6, 1–13. [Google Scholar] [CrossRef]
- Conte, S.; Zanelli, C.; Molinari, C.; Guarini, G.; Dondi, M. Glassy wastes as feldspar substitutes in porcelain stoneware tiles: Thermal behaviour and effect on sintering process. Mater. Chem. Phys. 2020, 256, 123613. [Google Scholar] [CrossRef]
- Ondruška, J.; Csáki, Š.; Štubňa, I. Influence of waste glass addition on thermal properties of kaolin and illite. AIP Conf. Proc. 2019, 2133, 020028. [Google Scholar] [CrossRef]
- Kovac, J.; Trnik, A.; Medveď, I.; Vozár, L. Influence of calcite in a ceramic body on its thermophysical properties. J. Therm. Anal. Calorim. 2013, 114, 963–970. [Google Scholar] [CrossRef]
- Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Štubňa, I.; Varga, G.; Trnik, A. Investigation of kaolinite dehydroxylations is still interesting. Építöanyag 2006, 58, 6–9. [Google Scholar] [CrossRef]
- Nemecz, E. Clay Minerals; Akadémiai Kiadó: Budapest, Hungary, 1981. [Google Scholar]
- Foldvári, M. Hanbook of Thermogarvimetric System of Minerals and Its Use in Geological Practice; Geological Institute of Hungary: Budapest, Hungary, 2011. [Google Scholar]
- Ryan, W. Properties of Ceramic Raw Materials; Elsevier BV: Amsterdam, The Netherlands, 1978; pp. 47–50. [Google Scholar]
- Štubňa, I.; Sin, P.; Trnik, A.; Veinthal, R. Mechanical Properties of Kaolin during Heating. Key Eng. Mater. 2012, 527, 14–19. [Google Scholar] [CrossRef]
- Norton, F.H. Fine Ceramics: Technology and Applications; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Hanykýř, V.; Kutzendorfer, J. Technology of Ceramics; Silis Praha: Praha, Czech Republic, 2008. [Google Scholar]
- Kurovics, E.; Kotova, O.B.; Ibrahim, J.E.F.M.; Tihtih, M.; Sun, S.; Pala, P.; Gömze, A.L. Characterization of phase transformation and thermal behavior of Sedlecky Kaolin. Építöanyag 2020, 72, 144–147. [Google Scholar] [CrossRef]
- Varga, G. The structure of kaolinite and metakaolinite. Építöanyag 2007, 59, 6–9. [Google Scholar] [CrossRef]
- Ptáček, P.; Šoukal, F.; Opravil, T.; Nosková, M.; Havlica, J.; Brandštetr, J. The kinetics of Al–Si spinel phase crystallization from calcined kaolin. J. Solid State Chem. 2010, 183, 2565–2569. [Google Scholar] [CrossRef]
- Ptáček, P.; Šoukal, F.; Opravil, T.; Nosková, M.; Havlica, J.; Brandštetr, J. Mid-infrared spectroscopic study of crystallization of cubic spinel phase from metakaolin. J. Solid State Chem. 2011, 184, 2661–2667. [Google Scholar] [CrossRef]
- Ondruška, J.; Trnik, A.; Keppert, M.; Medveď, I.; Vozár, L. Isothermal Dilatometric Study of Sintering in Kaolin. Int. J. Thermophys. 2012, 35, 1946–1956. [Google Scholar] [CrossRef]
- Chakraborty, A.K. Phase Transformation of Kaolinite Clay; Springer Nature: New Delhi, India, 2014. [Google Scholar]
- Favvas, E.P.; Tsanaktsidis, C.G.; Sapalidis, A.A.; Tzilantonis, G.T.; Papageorgiou, S.K.; Mitropoulos, A.C. Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous Mesoporous Mater. 2016, 225, 385–391. [Google Scholar] [CrossRef]
- Mansouri, N.; Rikhtegar, N.; Panahi, H.A.; Atabi, F.; Shahraki, B.K. Porosity, characteriza-tion and structural properties of natural zeolite-clinoptilolite—As a sorbent. Environ. Prot. Eng. 2013, 39, 139–152. [Google Scholar] [CrossRef]
- Kocak, Y.; Tascı, E.; Kaya, U. The effect of using natural zeolite on the properties and hydration characteristics of blended cements. Constr. Build. Mater. 2013, 47, 720–727. [Google Scholar] [CrossRef]
- Trnik, A.; Scheinherrova, L.; Medved, I.; Černý, R. Simultaneous DSC and TG analysis of high-performance concrete containing natural zeolite as a supplementary cementitious material. J. Therm. Anal. Calorim. 2015, 121, 67–73. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Chandran, P.; Ray, S.K.; Pal, D.K.; Mandal, C.; Mandal, D.K. Distribution of Zeolitic Soils in India. Curr. Sci. 2015, 109, 1305. [Google Scholar] [CrossRef]
- Lamprecht, M.; Bogner, S.; Steinbauer, K.; Schuetz, B.; Greilberger, J.F.; Leber, B.; Wagner, B.; Zinser, E.; Petek, T.; Wallner-Liebmann, S.; et al. Effects of zeolite supplementation on parameters of intestinal barrier integrity, inflammation, redoxbiology and performance in aerobically trained subjects. J. Int. Soc. Sports Nutr. 2015, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Laurino, C.; Palmieri, B. Zeolite: “the magic stone”; main nutritional, environmental, experimental and clinical fields of application. Nutr. Hosp. 2015, 32, 573–581. [Google Scholar]
- Sunitrová, I.; Trnik, A. DSC and TGA of a kaolin-based ceramics with zeolite addition during heating up to 1100 °C. AIP Conf. Proc. 2018, 1988, 020046. [Google Scholar] [CrossRef]
- Che, C.; Glotch, T.D.; Bish, D.L.; Michalski, J.R.; Xu, W. Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals. J. Geophys. Res. Space Phys. 2011, 116, 05007. [Google Scholar] [CrossRef]
- Földesová, M.; Lukac, P.; Dillinger, P.; Balek, V.; Svetík, Š. Thermochemical Properties of Chemically Modified Zeolite. J. Therm. Anal. Calorim. 1999, 58, 671–675. [Google Scholar] [CrossRef]
- Sunitrová, I.; Trnik, A. Young’s modulus and thermal expansion of ceramic samples made from kaolin and zeolite. AIP Conf. Proc. 2016, 1752, 40026. [Google Scholar] [CrossRef]
- Sunitrová, I.; Trnik, A. Thermal expansion of ceramic samples containing natural zeolite. AIP Conf. Proc. 2017, 1866, 040039. [Google Scholar] [CrossRef]
- Ptáček, P.; Křečková, M.; Šoukal, F.; Opravil, T.; Havlica, J.; Brandštetr, J. The kinetics and mechanism of kaolin powder sintering I. The dilatometric CRH study of sinter-crystallization of mullite and cristobalite. Powder Technol. 2012, 232, 24–30. [Google Scholar] [CrossRef]
- Vejmelková, E.; Koňáková, D.; Kulovaná, T.; Keppert, M.; Žumár, J.; Rovnaníková, P.; Keršner, Z.; Sedlmajer, M.; Černý, R. Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance. Cem. Concr. Compos. 2015, 55, 259–267. [Google Scholar] [CrossRef]
- Podoba, R.; Trník, A.; Podobník, L. Upgrading of TGA/DTA analyzer derivatograph. Építöanyag 2012, 64, 28–29. [Google Scholar] [CrossRef]
- Jankula, M.; Šín, P.; Podoba, R.; Ondruška, J. Typical problems in push-rod dilatometry analysis. Építöanyag 2013, 65, 11–14. [Google Scholar] [CrossRef]
- Ondruška, J.; Trnik, A.; Vozár, L. Degree of Conversion of Dehydroxylation in a Large Electroceramic Body. Int. J. Thermophys. 2010, 32, 729–735. [Google Scholar] [CrossRef]
- Antal, D.; Húlan, T.; Štubňa, I.; Záleská, M.; Trník, A. The influence of texture on elastic and thermophysical properties of kaolin- and illite-based ceramic bodies. Ceram. Int. 2017, 43, 2730–2736. [Google Scholar] [CrossRef]
- Frizzo, R.G.; Zaccaron, A.; Nandi, V.D.S.; Bernardin, A.M. Pyroplasticity on porcelain tiles of the albite-potassium feldspar-kaolin system: A mixture design analysis. J. Build. Eng. 2020, 31, 101432. [Google Scholar] [CrossRef]
- Trnik, A.; Štubňa, I.; Moravčíková, J. Sound Velocity of Kaolin in the Temperature Range from 20 °C to 1100 °C. Int. J. Thermophys. 2009, 30, 1323–1328. [Google Scholar] [CrossRef]
- Dell’Agli, G.; Ferone, C.; Mascolo, G.; Pansini, M. Dilatometry of Na-, K-, Ca- and NH4-clinoptilolite. Thermochim. Acta 1999, 336, 105–110. [Google Scholar] [CrossRef]
- Michot, A.; Smith, D.S.; Degot, S.; Gault, C. Thermal conductivity and specific heat of kaolinite: Evolution with thermal treatment. J. Eur. Ceram. Soc. 2008, 28, 2639–2644. [Google Scholar] [CrossRef]
Oxides | Kaolin | Zeolite |
---|---|---|
SiO2 | 46.9–47.9 | 65.0–71.3 |
Al2O3 | 36.6–37.6 | 11.5–13.1 |
Fe2O3 | 1.2 | 0.7–1.9 |
CaO | 0.7 | 2.7–5.2 |
MgO | 0.5 | 0.6–1.2 |
Na2O | 0.1 | 0.2–1.3 |
K2O | 0.8–1.1 | 2.2–3.4 |
TiO2 | 0.5 | 0.1–0.3 |
Sample | SLA | KZ10 | KZ20 | KZ30 | KZ40 | KZ50 | ZEO |
---|---|---|---|---|---|---|---|
Kaolin | 100 | 90 | 80 | 70 | 60 | 50 | – |
Zeolite | – | 10 | 20 | 30 | 40 | 50 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ondruška, J.; Húlan, T.; Sunitrová, I.; Csáki, Š.; Łagód, G.; Struhárová, A.; Trník, A. Thermophysical Properties of Kaolin–Zeolite Blends up to 1100 °C. Crystals 2021, 11, 165. https://doi.org/10.3390/cryst11020165
Ondruška J, Húlan T, Sunitrová I, Csáki Š, Łagód G, Struhárová A, Trník A. Thermophysical Properties of Kaolin–Zeolite Blends up to 1100 °C. Crystals. 2021; 11(2):165. https://doi.org/10.3390/cryst11020165
Chicago/Turabian StyleOndruška, Ján, Tomáš Húlan, Ivana Sunitrová, Štefan Csáki, Grzegorz Łagód, Alena Struhárová, and Anton Trník. 2021. "Thermophysical Properties of Kaolin–Zeolite Blends up to 1100 °C" Crystals 11, no. 2: 165. https://doi.org/10.3390/cryst11020165
APA StyleOndruška, J., Húlan, T., Sunitrová, I., Csáki, Š., Łagód, G., Struhárová, A., & Trník, A. (2021). Thermophysical Properties of Kaolin–Zeolite Blends up to 1100 °C. Crystals, 11(2), 165. https://doi.org/10.3390/cryst11020165